【云计算与大数据计算】分布式处理CPU多核、MPI并行计算、Hadoop、Spark的简介(超详细)

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【云计算与大数据计算】分布式处理CPU多核、MPI并行计算、Hadoop、Spark的简介(超详细)

一、CPU多核和POISX Thread

为了提高任务的计算处理能力,下面分别从硬件和软件层面研究新的计算处理能力

在硬件设备上,CPU 技术不断发展,出现了SMP(对称多处理器)和 NUMA(非一致 性内存访问)两种高速处理的 CPU 结构

在软件层面出现了多进程和多线程编程。进程是内存资源管理单元,线程是任务调度单元

总的来说,线程所占用的资源更少,运行一个线程所需要的资源包括寄存器,栈,程序计数器,早期不同厂商提供了不同的多线程编写库,以充分利用多个不同的线程库,组成POSIX Thread的API分成以下四个大类

1:线程管理 线程管理主要负责线程的create detach join等等 也包括线程属性的查询和设置

2:mutexes 处理同步的例程称为mutex,mutex提供了create destroy lock和unlock等函数

3:条件变量  条件变量主要用于多个线程之间的通信和协调

4:同步 同步用于管理读写锁,以及barriers

POSIX Thread 多线程编程标准

二、MPI并行计算框架

MPI (Message Passing Interface 消息传递窗口 )是一个标准且可移植的消息传递系统,服务于大规模的并行计算

广泛采用的实现有 MPICH

MPICH 包括 ADI3、CH3 Device、CH3Interface、Nemesis、Nemesis Net ModInterface

MPICH架构如下

三、Hadoop MapReduce

Hadoop是一个由 Apache基金会开发的分布式系统基础架构

Hadoop框架最核心的设计就是 HDFS和 MapReduce

HDFS有高容错性的特点,并且设计用来部署在低廉的硬件上,而且它提供高吞吐量来访问应用程序的数据,适合有着超大数据集的应用程序,HDFS放宽了POSIX的要求,可以用流的形式访问文件系统中的数据

MapReduce为海量的数据提供了计算

指 定 一 个 Map 函数 ,用来把一组键值对映射成一组新的键值对, 指定并发的 Reduce函数,用来保证所有映射的键值对中的每一个共享相同的键组

四、Spark

Spark 是 UC Berkeley AMPLab所开源的类 Hadoop MapReduce的通用的并行计算框架

Spark 基于 map-reduce 算法实现的分布式计算,拥有 Hadoop MapReduce 所具有的优点

不同于 MapReduce的是中间输出和结果可以保存在内存中

Spark 最主要的结构是RDD (Resilient Distributed Datasets),它表示已被分区 、不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的 RDD 实现

因此Spark很适合迭代运算比较常见的机器学习算法、交互式数据挖掘等等。

五、数据处理技术的发展

数据处理从早期的共享分时单 CPU 操作系统处理到多核并发处理

早期 Google公司的分布式计算框 架 MapReduce采用的思想就是连接多台廉价的计算设备,以此来提供进行大规模计算任务的能力

为了满足实时计算任务需求,设计实现了流计算框架,比如Spark Streaming、Storm 、Flink 等实时计算框架

目前处理技术在往大规模、低延迟方向发展

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
16天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
51 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
18天前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
47 6
|
16天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
60 2
|
17天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
56 1
|
17天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
17天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
48 1
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
4天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
45 7
|
4天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
14 2
|
16天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
58 1

热门文章

最新文章