强化深度学习中使用Dyna-Q算法确定机器人问题中不同规划的学习和策略实战(超详细 附源码)

简介: 强化深度学习中使用Dyna-Q算法确定机器人问题中不同规划的学习和策略实战(超详细 附源码)

需要源码请点赞关注收藏后评论区留下QQ并且私信~~~

一、模型、学习、规划简介

1:模型

Agent可以通过模型来预测环境并做出反应,这里所说的模型通常指模拟模型,即在给定一个状态和动作时,通过模型可以对下一状态和奖赏做出预测

模型通常可以分为分布模型和样本模型两种类型

分布模型:该模型可以生成所有可能的结果及其对应的概率分布

样本模型:该模型能够从所有可能的情况中产生一个确定的结果

从功能上讲,模型是用于模拟环境和产生模拟经验的。与样本模型相比,分布模型包含更多的信息,只是现实任务中难以获得所有的状态转移概率

2:学习

学习过程是从环境产生的真实经验中进行学习,根据经验的使用方法,学习过程可以分为直接强化学习和模型学习两种类型

直接强化学习:在真实环境中采集真实经验,根据真实经验直接更新值函数或策略,不受模型偏差的影响

模型学习:在真实环境中采集真实经验,根据真实经验来构建和改进模拟模型,提供模拟模型精度,使其更接近真实环境

3:规划

规划过程是基于模拟环境或经验模型,从模拟经验中更新值函数,实现改进策略的目的,学习和规划的核心都是通过回溯操作来评估值函数,不同之处在于:在规划过程中,Agent并没有与真实环境交互

规划通常可分为状态空间规划和方案空间规划,状态空间规划是在状态空间中寻找最优策略,值函数的计算都是基于状态的,通常该规划方法视为搜索方法,其基本思想如下

1:所有规划算法都以计算值函数作为策略改进的中间关键步骤

2:所有规划算法都可以通过基于模型产生的模拟经验来计算值函数

二、Dyna-Q结构及其算法

Dyna-Q架构包含了在线规划Agent所需要的主要功能,该架构讲学习和规划有机地结合在一起,是有模型和无模型方法的融合,其数据来源包括基于真实环境采样的真实经验以及基于模拟模型采样的模拟经验,通过直接强化学习或间接强化学习来更新值函数或者策略

架构图如下

三、Dyna-Q不同规划对学习步数的影响

机器人环境搭建以及背景可点击如下链接了解

机器人环境

此处比较不同规划步数对实验效果的影响,当机器人离开边界或者撞到障碍物则得到-10的奖赏,到达充电桩获得+1的奖赏,其他情况奖赏均为0,不同需要不同情节数,可视化结果如下

代码如下

import gym
from gym import spaces
from gym.utils import seeding
from random import random, choice
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
class Grid(object):
    def __init__(self, x:int = None,
                       y:int = None,
                       type:int = 0,
                       reward:float = 0.0):
        self.x = x                          # 坐标x
        self.y = y
        self.type = type                    # 类别值(0:空;1:障碍或边界)
        self.reward = reward                # 该格子的即时奖励
        self.name = None                    # 该格子的名称
        self._update_name()
    def _update_name(self):
        self.name = "X{0}-Y{1}".format(self.x, self.y)
    def __str__(self):
        return "name:{3}, x:{0}, y:{1}, type:{2}".format(self.x,
                                                                    self.y,
                                                                    self.type,
                                                                    self.name
                                                                    )
class GridMatrix(object):
    def __init__(self, n_width:int,                 # 水平方向格子数
                       n_height:int,                # 竖直方向格子数
                       default_type:int = 0,        # 默认类型
                       default_reward:float = 0.0,  # 默认即时奖励值
                       ):
        self.grids = None
        self.n_height = n_height
        self.n_width = n_width
        self.len = n_width * n_height
        self.default_reward = default_reward
        self.default_type = default_type
        self.reset()
    def reset(self):
        self.grids = []
        for x in range(self.n_height):
            for y in range(self.n_width):
                self.grids.append(Grid(x,
                                       y,
                                       self.default_type,
                                       self.default_reward))
    def get_grid(self, x, y=None):
        '''获取一个格子信息
        args:坐标信息,由x,y表示或仅有一个类型为tuple的x表示
        return:grid object
        '''
        xx, yy = None, None
        if isinstance(x, int):
            xx, yy = x, y
        elif isinstance(x, tuple):
            xx, yy = x[0], x[1]
        assert(xx >= 0 and yy >= 0 and xx < self.n_width and yy < self.n_height), "任意坐标值应在合理区间"
        index = yy * self.n_width + xx
        return self.grids[index]
    def set_reward(self, x, y, reward):
        grid = self.get_grid(x, y)
        if grid is not None:
            grid.reward = reward
        else:
            raise("grid doesn't exist")
    def set_type(self, x, y, type):
        grid = self.get_grid(x, y)
        if grid is not None:
            grid.type = type
        else:
            raise("grid doesn't exist")
    def get_reward(self, x, y):
        grid = self.get_grid(x, y)
        if grid is None:
            return None
        return grid.reward
    def get_type(self, x, y):
        grid = self.get_grid(x, y)
        if grid is None:
            return None
        return grid.type
# 格子世界环境
class GridWorldEnv(gym.Env):
    metadata = {
        'render.modes': ['human', 'rgb_array'],
        'video.frames_per_second': 30
    }
    def __init__(self, n_width: int=5,
                       n_height: int = 5,
                       u_size=40,
                       default_reward: float = 0.0,
                       default_type=0):
        self.u_size = u_size                        # 当前格子绘制尺寸
        self.n_width = n_width                      # 格子世界宽度(以格子数计)
        self.n_height = n_height                    # 高度
        self.width = u_size * n_width               # 场景宽度 screen width
        self.height = u_size * n_height             # 场景长度
        self.default_reward = default_reward
        self.default_type = default_type
        self.grids = GridMatrix(n_width=self.n_width,
                                n_height=self.n_height,
                                default_reward=self.default_reward,
                                default_type=self.default_type)
        self.reward = 0                             # for rendering
        self.action = None                          # for rendering
        # 0,1,2,3 represent up, down, left, right
        self.action_space = spaces.Discrete(4)
        # 观察空间由low和high决定
        self.observation_space = spaces.Discrete(self.n_height * self.n_width)
        self.ends = [(0, 0)]  # 终止格子坐标,可以有多个
        self.start = (0, 4)  # 起始格子坐标,只有一个
        self.types = [(2, 2, 1)]
        self.rewards = []
        self.refresh_setting()
        self.viewer = None  # 图形接口对象
        self.seed()  # 产生一个随机子
        self.reset()
    def seed(self, seed=None):
        # 产生一个随机化时需要的种子,同时返回一个np_random对象,支持后续的随机化生成操作
        self.np_random, seed = seeding.np_random(seed)
        return [seed]
    def step(self, action):
        assert self.action_space.contains(action), "%r (%s) invalid" % (action, type(action))
        self.action = action                        # action for rendering
        old_x, old_y = self._state_to_xy(self.state)
        new_x, new_y = old_x, old_y
        if action == 0: new_y += 1  # up
        elif action == 1: new_y -= 1  # down
        elif action == 2: new_x -= 1  # left
        elif action == 3: new_x += 1  # right
        # boundary effect
        if new_x < 0: new_x = 0
        if new_x >= self.n_width: new_x = self.n_width - 1
        if new_y < 0: new_y = 0
        if new_y >= self.n_height: new_y = self.n_height - 1
        # wall effect:
        # 类型为1的格子为障碍格子,不可进入
        if self.grids.get_type(new_x, new_y) == 1:
            new_x, new_y = old_x, old_y
        self.reward = self.grids.get_reward(new_x, new_y)
        done = self._is_end_state(new_x, new_y)
        self.state = self._xy_to_state(new_x, new_y)
        # 提供格子世界所有的信息在info内
        info = {"x": new_x, "y": new_y, "grids": self.grids}
        return self.state, self.reward, done, info
    # 将状态变为横纵坐标
    def _state_to_xy(self, s):
        x = s % self.n_width
        y = int((s - x) / self.n_width)
        return x, y
    def _xy_to_state(self, x, y=None):
        if isinstance(x, int):
            assert (isinstance(y, int)), "incomplete Position info"
            return x + self.n_width * y
        elif isinstance(x, tuple):
            return x[0] + self.n_width * x[1]
        return -1  # 未知状态
    def refresh_setting(self):
        '''用户在使用该类创建格子世界后可能会修改格子世界某些格子类型或奖励值
        的设置,修改设置后通过调用该方法使得设置生效。
        '''
        for x, y, r in self.rewards:
            self.grids.set_reward(x, y, r)
        for x, y, t in self.types:
            self.grids.set_type(x, y, t)
    def reset(self):
        self.state = self._xy_to_state(self.start)
        return self.state
    # 判断是否是终止状态
    def _is_end_state(self, x, y=None):
        if y is not None:
            xx, yy = x, y
        elif isinstance(x, int):
            xx, yy = self._state_to_xy(x)
        else:
            assert (isinstance(x, tuple)), "坐标数据不完整"
            xx, yy = x[0], x[1]
        for end in self.ends:
            if xx == end[0] and yy == end[1]:
                return True
        return False
    # 图形化界面
    def render(self, mode='human', close=False):
        if close:
            if self.viewer is not None:
                self.viewer.close()
                self.viewer = None
            return
        zero = (0, 0)
        u_size = self.u_size
        m = 2                                       # 格子之间的间隙尺寸
        # 如果还没有设定屏幕对象,则初始化整个屏幕具备的元素。
        if self.viewer is None:
            from gym.envs.classic_control import rendering
            self.viewer = rendering.Viewer(self.width, self.height)
            # 绘制格子
            for x in range(self.n_width):
                for y in range(self.n_height):
                    v = [(x * u_size + m, y * u_size + m),
                         ((x + 1) * u_size - m, y * u_size + m),
                         ((x + 1) * u_size - m, (y + 1) * u_size - m),
                         (x * u_size + m, (y + 1) * u_size - m)]
                    rect = rendering.FilledPolygon(v)
                    r = self.grids.get_reward(x, y) / 10
                    if r < 0:
                        rect.set_color(0.9 - r, 0.9 + r, 0.9 + r)
                    elif r > 0:
                        rect.set_color(0.3, 0.5 + r, 0.3)
                    else:
                        rect.set_color(0.9, 0.9, 0.9)
                    self.viewer.add_geom(rect)
                    # 绘制边框
                    v_outline = [(x * u_size + m, y * u_size + m),
                                 ((x + 1) * u_size - m, y * u_size + m),
                                 ((x + 1) * u_size - m, (y + 1) * u_size - m),
                                 (x * u_size + m, (y + 1) * u_size - m)]
                    outline = rendering.make_polygon(v_outline, False)
                    outline.set_linewidth(3)
                    if self._is_end_state(x, y):
                        # 给终点方格添加金黄色边框
                        outline.set_color(0.9, 0.9, 0)
                        self.viewer.add_geom(outline)
                    if self.start[0] == x and self.start[1] == y:
                        outline.set_color(0.5, 0.5, 0.8)
                        self.viewer.add_geom(outline)
                    if self.grids.get_type(x, y) == 1:  # 障碍格子用深灰色表示
                        rect.set_color(0.3, 0.3, 0.3)
                    else:
                        pass
            # 绘制个体
            self.agent = rendering.make_circle(u_size / 4, 30, True)
            self.agent.set_color(1.0, 1.0, 0.0)
            self.viewer.add_geom(self.agent)
            self.agent_trans = rendering.Transform()
            self.agent.add_attr(self.agent_trans)
            # 更新个体位置
        x, y = self._state_to_xy(self.state)
        self.agent_trans.set_translation((x + 0.5) * u_size, (y + 0.5) * u_size)
        return self.viewer.render(return_rgb_array= mode == 'rgb_array')
# 环境参数设定
class Agent():
    def __init__(self, env):
        self.episode = 1
        self.Q = {}
        self.actions = [0, 1, 2, 3]
        self.position = env.start
        self.model = {}
    # 建立模型
    def make_model(self, pos, act, reward, next_state):
        self.model["{0},{1}".format(pos, act)] = "{0},{1}".format(reward, next_state)
    # 模型规划
    def q_planning(self,n):
        for i in range(0,n):
            a = [i for i in self.model.keys()]
            done = False
            if a != []:
                str = choice(a)
                pos = str.split(",")[0]+","+str.split(",")[1]
                act = int(str.split(",")[2])
                reward = float(self.model[str].split(",")[0])
                next_state = self.model[str].split(",")[1]+","+self.model[str].split(",")[2]
                if next_state == "(0,0)" or next_state == "(4,3)":
                    done = True
                self.updateQ(pos, act, next_state, reward, done)
    def chaxunQ(self, pos, act):
        judge = False
        for i in self.Q:
            if i == "{0},{1}".format(pos, act):
                judge = True
                break
        if judge == True:
            return True
        else:
            self.Q["{0},{1}".format(pos, act)] = float(format(random()/10000, '.3f'))
            return
    # 更新状态动作值Q函数
    def updateQ(self, pos, action, next_pos, reward, done):
        if done == False:
            self.chaxunQ(pos, action)
            old_q = self.Q["{0},{1}".format(pos, action)]
            action1 = self.performmax(next_pos)
            # self.chaxunQ(next_pos, action1)
            new_q = self.Q["{0},{1}".format(next_pos, action1)]
            old_q = old_q + 0.1 * (reward+0.9 * new_q - old_q)
            self.Q["{0},{1}".format(pos, action)] = float(format(old_q, '.3f'))
        else:
            self.chaxunQ(pos, action)
            self.Q["{0},{1}".format(pos, action)] = float(format(reward, '.3f'))
            # print(pos, action,reward)
    # 动作选取策略
    def perform(self, pos):
        eplison = random()
        self.chaxunQ(pos, choice([0, 1, 2, 3]))
        if eplison > 1/self.episode:
            maxq = -1000
            act = ""
            for i in self.Q:
                list = i.split(",")
                state = list[0] + "," + list[1]
                if state == str(pos):
                    if self.Q[i] > maxq:
                        maxq = self.Q[i]
                        act = list[2]
            return int(act)
        else:
            return choice([0, 1, 2, 3])
    # argmaxQ
    def performmax(self, pos):
        maxq = -1000
        str1 = ""
        self.chaxunQ(pos,choice([0,1,2,3]))
        for i in self.Q:
            list = i.split(",")
            state = list[0]+","+list[1]
            if state == str(pos):
                if self.Q[i] > maxq:
                    maxq = self.Q[i]
                    str1 = list[2]
        return int(str1)
def run(n):
    agent = Agent(env)
    total_j = 0
    total_r = 0
    a = []
    b = []
    env.refresh_setting()
    for i in range(0, 300):
        done = False
        env.reset()
        r = 0
        j = 0
        while done == False:
            state = env._state_to_xy(env.state)
            action = agent.perform(state)
            next_state, reward, done, info = env.step(action)
            next_state = env._state_to_xy(next_state)
            # 更新Q值
            agent.updateQ(state, action, next_state, reward,done)
            # 更新模型
            agent.make_model(state, action, reward, next_state)
            r += reward
            # 模型规划
            agent.q_planning(n)
            j = j+1
        tpend(total_r)
        agent.episode += 1
        # print(agent.Q)
        total_j += j
        if i != 0:
            b.append(j)
        print("回合={0},步数={1},奖赏={2}".format(i, j, '%.3f' % r))
    # return (np.array(a)/np.array(total_j)).tolist()
    # return a
    return b
if __name__ == "__main__":
    n_width = 5
    n_height = 5
    default_reward = 0
    env = GridWorldEnv(n_width, n_height, default_reward=default_reward)
    env.types = [(2, 2, 1)]
    env.rewards = [(0, 0, 1), (4, 3, 1)]  # 奖赏值设定
    env.start = (0, 4)
    env.ends = [(0, 0), (4, 3)]
    env.refresh_setting()
    x = range(1, 300)
    ln1, = plt.plot(x, run(0), label=u"n=0")
    ln2, = plt.plot(x, run(5), label=u"n=5")
    ln3, = plt.plot(x, run(10), label=u"n=10")
    ln4, = plt.plot(x, run(30), label=u"n=30")
    font1 = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=15)
ontproperties=font1)
    plt.ylabel(u'步数', fontproperties=font1)
    plt.show()

四、Dyan-Q算法对策略的影响

同样Agent在不同的情节中采用不同的n获得的策略也不一样,当n=50的时候明显快,而且策略更加广泛

代码如下

from random import random, choice
import gym
from gym import spaces
from gym.utils import seeding
class Grid(object):
    def __init__(self, x:int = None,
                       y:int = None,
                       type:int = 0,
                       reward:float = 0.0):
        self.x = x                          # 坐标x
        self.y = y
        self.type = type                    # 类别值(0:空;1:障碍或边界)
        self.reward = reward                # 该格子的即时奖励
        self.name = None                    # 该格子的名称
        self._update_name()
    def _update_name(self):
        self.name = "X{0}-Y{1}".format(self.x, self.y)
    def __str__(self):
        return "name:{3}, x:{0}, y:{1}, type:{2}".format(self.x,
                                                                    self.y,
                                                                    self.type,
                                                                    self.name
                                                                    )
class GridMatrix(object):
    def __init__(self, n_width:int,                 # 水平方向格子数
                       n_height:int,                # 竖直方向格子数
                       default_type:int = 0,        # 默认类型
                       default_reward:float = 0.0,  # 默认即时奖励值
                       ):
        self.grids = None
        self.n_height = n_height
        self.n_width = n_width
        self.len = n_width * n_height
        self.default_reward = default_reward
        self.default_type = default_type
        self.reset()
    def reset(self):
        self.grids = []
        for x in range(self.n_height):
            for y in range(self.n_width):
                self.grids.append(Grid(x,
                                       y,
                                       self.default_type,
                                       self.default_reward))
    def get_grid(self, x, y=None):
        '''获取一个格子信息
        args:坐标信息,由x,y表示或仅有一个类型为tuple的x表示
        return:grid object
        '''
        xx, yy = None, None
        if isinstance(x, int):
            xx, yy = x, y
        elif isinstance(x, tuple):
            xx, yy = x[0], x[1]
        assert(xx >= 0 and yy >= 0 and xx < self.n_width and yy < self.n_height), "任意坐标值应在合理区间"
        index = yy * self.n_width + xx
        return self.grids[index]
    def set_reward(self, x, y, reward):
        grid = self.get_grid(x, y)
        if grid is not None:
            grid.reward = reward
        else:
            raise("grid doesn't exist")
    def set_type(self, x, y, type):
        grid = self.get_grid(x, y)
        if grid is not None:
            grid.type = type
        else:
            raise("grid doesn't exist")
    def get_reward(self, x, y):
        grid = self.get_grid(x, y)
        if grid is None:
            return None
        return grid.reward
    def get_type(self, x, y):
        grid = self.get_grid(x, y)
        if grid is None:
            return None
        return grid.type
class GridWorldEnv(gym.Env):
    metadata = {
        'render.modes': ['human', 'rgb_array'],
        'video.frames_per_second': 30
    }
    def __init__(self, n_width: int=5,
                       n_height: int = 5,
                       u_size=40,
                       default_reward: float = 0.0,
                       default_type=0):
        self.u_size = u_size                        # 当前格子绘制尺寸
        self.n_width = n_width                      # 格子世界宽度(以格子数计)
        self.n_height = n_height                    # 高度
        self.width = u_size * n_width               # 场景宽度 screen width
        self.height = u_size * n_height             # 场景长度
        self.default_reward = default_reward
        self.default_type = default_type
        self.grids = GridMatrix(n_width=self.n_width,
                                n_height=self.n_height,
                                default_reward=self.default_reward,
                                default_type=self.default_type)
        self.reward = 0                             # for rendering
        self.action = None                          # for rendering
        # 0,1,2,3 represent up, down, left, right
        self.action_space = spaces.Discrete(4)
        # 观察空间由low和high决定
        self.observation_space = spaces.Discrete(self.n_height * self.n_width)
        self.ends = [(0, 0)]  # 终止格子坐标,可以有多个
        self.start = (0, 4)  # 起始格子坐标,只有一个
        self.types = [(2, 2, 1)]
        self.rewards = []
        self.refresh_setting()
        self.viewer = None  # 图形接口对象
        self.seed()  # 产生一个随机子
        self.reset()
    def seed(self, seed=None):
        # 产生一个随机化时需要的种子,同时返回一个np_random对象,支持后续的随机化生成操作
        self.np_random, seed = seeding.np_random(seed)
        return [seed]
    def step(self, action):
        assert self.action_space.contains(action), "%r (%s) invalid" % (action, type(action))
        self.action = action                        # action for rendering
        old_x, old_y = self._state_to_xy(self.state)
        new_x, new_y = old_x, old_y
        if action == 0: new_y += 1  # up
        elif action == 1: new_y -= 1  # down
        elif action == 2: new_x -= 1  # left
        elif action == 3: new_x += 1  # right
        # boundary effect
        if new_x < 0: new_x = 0
        if new_x >= self.n_width: new_x = self.n_width - 1
        if new_y < 0: new_y = 0
        if new_y >= self.n_height: new_y = self.n_height - 1
        # wall effect:
        # 类型为1的格子为障碍格子,不可进入
        if self.grids.get_type(new_x, new_y) == 1:
            new_x, new_y = old_x, old_y
        self.reward = self.grids.get_reward(new_x, new_y)
        done = self._is_end_state(new_x, new_y)
        self.state = self._xy_to_state(new_x, new_y)
        # 提供格子世界所有的信息在info内
        info = {"x": new_x, "y": new_y, "grids": self.grids}
        return self.state, self.reward, done, info
    # 将状态变为横纵坐标
    def _state_to_xy(self, s):
        x = s % self.n_width
        y = int((s - x) / self.n_width)
        return x, y
    def _xy_to_state(self, x, y=None):
        if isinstance(x, int):
            assert (isinstance(y, int)), "incomplete Position info"
            return x + self.n_width * y
        elif isinstance(x, tuple):
            return x[0] + self.n_width * x[1]
        return -1  # 未知状态
    def refresh_setting(self):
        '''用户在使用该类创建格子世界后可能会修改格子世界某些格子类型或奖励值
        的设置,修改设置后通过调用该方法使得设置生效。
        '''
        for x, y, r in self.rewards:
            self.grids.set_reward(x, y, r)
        for x, y, t in self.types:
            self.grids.set_type(x, y, t)
    def reset(self):
        self.state = self._xy_to_state(self.start)
        return self.state
    # 判断是否是终止状态
    def _is_end_state(self, x, y=None):
        if y is not None:
            xx, yy = x, y
        elif isinstance(x, int):
            xx, yy = self._state_to_xy(x)
        else:
            assert (isinstance(x, tuple)), "坐标数据不完整"
            xx, yy = x[0], x[1]
        for end in self.ends:
            if xx == end[0] and yy == end[1]:
                return True
        return False
    # 图形化界面
    def render(self, mode='human', close=False):
        if close:
            if self.viewer is not None:
                self.viewer.close()
                self.viewer = None
            return
        zero = (0, 0)
        u_size = self.u_size
        m = 2                                       # 格子之间的间隙尺寸
        # 如果还没有设定屏幕对象,则初始化整个屏幕具备的元素。
        if self.viewer is None:
            from gym.envs.classic_control import rendering
            self.viewer = rendering.Viewer(self.width, self.height)
            # 绘制格子
            for x in range(self.n_width):
                for y in range(self.n_height):
                    v = [(x * u_size + m, y * u_size + m),
                         ((x + 1) * u_size - m, y * u_size + m),
                         ((x + 1) * u_size - m, (y + 1) * u_size - m),
                         (x * u_size + m, (y + 1) * u_size - m)]
                    rect = rendering.FilledPolygon(v)
                    r = self.grids.get_reward(x, y) / 10
                    if r < 0:
                        rect.set_color(0.9 - r, 0.9 + r, 0.9 + r)
                    elif r > 0:
                        rect.set_color(0.3, 0.5 + r, 0.3)
                    else:
                        rect.set_color(0.9, 0.9, 0.9)
                    self.viewer.add_geom(rect)
                    # 绘制边框
                    v_outline = [(x * u_size + m, y * u_size + m),
                                 ((x + 1) * u_size - m, y * u_size + m),
                                 ((x + 1) * u_size - m, (y + 1) * u_size - m),
                                 (x * u_size + m, (y + 1) * u_size - m)]
                    outline = rendering.make_polygon(v_outline, False)
                    outline.set_linewidth(3)
                    if self._is_end_state(x, y):
                        # 给终点方格添加金黄色边框
                        outline.set_color(0.9, 0.9, 0)
                        self.viewer.add_geom(outline)
                    if self.start[0] == x and self.start[1] == y:
                        outline.set_color(0.5, 0.5, 0.8)
                        self.viewer.add_geom(outline)
                    if self.grids.get_type(x, y) == 1:  # 障碍格子用深灰色表示
                        rect.set_color(0.3, 0.3, 0.3)
                    else:
                        pass
            # 绘制个体
            self.agent = rendering.make_circle(u_size / 4, 30, True)
            self.agent.set_color(1.0, 1.0, 0.0)
            self.viewer.add_geom(self.agent)
            self.agent_trans = rendering.Transform()
            self.agent.add_attr(self.agent_trans)
            # 更新个体位置
        x, y = self._state_to_xy(self.state)
        self.agent_trans.set_translation((x + 0.5) * u_size, (y + 0.5) * u_size)
        return self.viewer.render(return_rgb_array= mode == 'rgb_array')
# 环境参数设定
class Agent():
    def __init__(self, env):
        self.episode = 1
        self.Q = {}
        self.actions = [0, 1, 2, 3]
        self.position = env.start
        self.model = {}
    def make_model(self, pos, act, reward, next_state):
        self.model["{0},{1}".format(pos, act)] = "{0},{1}".format(reward, next_state)
    def q_planning(self,n):
        for i in range(0, n):
            a = [i for i in self.model.keys()]
            done=False
            if a != []:
                str = choice(a)
                pos = str.split(",")[0]+","+str.split(",")[1]
                act = int(str.split(",")[2])
                reward = float(self.model[str].split(",")[0])
                next_state = self.model[str].split(",")[1]+","+self.model[str].split(",")[2]
                if next_state == "(8,5)" or next_state == "(1,6)":
                    done = True
                self.updateQ(pos,act,next_state,reward,done)
    def chaxunQ(self, pos, act):
        judge = False
        for i in self.Q:
            if i == "{0},{1}".format(pos, act):
                judge = True
                break
        if judge == True:
            return True
        else:
            self.Q["{0},{1}".format(pos, act)] = float(format(random()/10000, '.3f'))
            return
    # 更新状态动作值Q函数
    def updateQ(self, pos,action,next_pos,reward,done):
        if done == False:
            self.chaxunQ(pos, action)
            old_q = self.Q["{0},{1}".format(pos, action)]
            action1 = self.performmax(next_pos)
            new_q = self.Q["{0},{1}".format(next_pos, action1)]
            old_q = old_q + 0.1 * (reward+0.9 * new_q - old_q)
            self.Q["{0},{1}".format(pos, action)] = float(format(old_q, '.3f'))
        else:
            self.chaxunQ(pos, action)
            self.Q["{0},{1}".format(pos, action)] = float(format(reward, '.3f'))
    # 动作选取策略
    def perform(self, pos):
        eplison = random()
        self.chaxunQ(pos, choice([0, 1, 2, 3]))
        if eplison > 1/self.episode:
            maxq = -1000
            act = ""
            for i in self.Q:
                list = i.split(",")
                state = list[0] + "," + list[1]
                if state == str(pos):
                    if self.Q[i] > maxq:
                        maxq = self.Q[i]
                        act = list[2]
            return int(act)
        else:
            return choice([0, 1, 2, 3])
    # argmaxQ
    def performmax(self, pos):
        maxq = -1000
        str1 = ""
        self.chaxunQ(pos,choice([0,1,2,3]))
        for i in self.Q:
            list = i.split(",")
            state = list[0]+","+list[1]
            if state == str(pos):
                if self.Q[i] > maxq:
                    maxq = self.Q[i]
                    str1 = list[2]
        return int(str1)
def run(n):
    agent = Agent(env)
    total_j = 0
    total_r = 0
    a = []
    b = []
    env.refresh_setting()
    for i in range(0, 300):
        done = False
        env.reset()
        r = 0
        j = 0
        while done == False and j < 50:
            j = j + 1
            state = env._state_to_xy(env.state)
            action = agent.perform(state)
            next_state, reward, done, info = env.step(action)
            next_state = env._state_to_xy(next_state)
            # 更新模型
            agent.make_model(state, action, reward, next_state)
            # 更新Q值
            agent.updateQ(state, action, next_state, reward, done)
            r += reward
            # 模型规划
            agent.q_planning(n)
        if i >= 2:
            total_r += r
            a.append(total_r)
        agent.episode += 1
        action_Q = {}
        for i in sorted(list(agent.Q.keys()), key=lambda x: [x[1], x[4], x[5], x[-1]]):
            action_Q[i] = agent.Q[i]
        print("n={0}:Q值{1}".format(n, action_Q))
        # P_A:状态采取策略
        P_A = {}
        Q_keys = list(action_Q.keys())
        for i in range(0, len(Q_keys)-4, 4):
            temp_action_list = []
            max_a_value = max(action_Q[Q_keys[j]] for j in range(i, i+4))
            # temp_num:标记四个动作最大值
            temp_num = [0, 0, 0, 0]
            # PA:四个动作概率
            PA = [0, 0, 0, 0]
            for k in range(i, i+4):
                if action_Q[Q_keys[k]] == max_a_value:
                    temp_action_list.append(Q_keys[k])
                    temp_num[k-i] = 1
            valid_action_p = round(1/len(temp_action_list), 2)
            for m in range(4):
                if temp_num[m] == 1:
                    PA[m] = valid_action_p
            P_A[Q_keys[i][0:-2]] = PA
        print("Q_A: ", P_A)
        total_j += j
        b.append(j)
    return a
if __name__ == "__main__":
    n_width = 11
    n_height = 7
    default_reward = -0.1
    env = GridWorldEnv(n_width, n_height, default_reward=default_reward)
    env.types = [(1, 2, 1), (2, 2, 1), (3, 2, 1), (4, 2, 1), (5, 2, 1), (6, 2, 1), (7, 2, 1), (8, 2, 1), (9, 2, 1),
                 (10, 2, 1)]
    env.rewards = [(8, 5, 1), (1, 6, 1)]  # 奖赏值设定
    env.start = (4, 0)  # 机器人出发点坐标
    env.ends = [(8, 5), (1, 6)]  # 吸入状态坐标
    env.refresh_setting()
    for i in range(0, 2):
        print("episode=", i+1)
        run(0)
    for i in range(0, 2):
        print("episode=", i+1)
        run(50)

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
机器学习/深度学习 人工智能 监控
AI算法分析,智慧城管AI智能识别系统源码
AI视频分析技术应用于智慧城管系统,通过监控摄像头实时识别违法行为,如违规摆摊、垃圾、违章停车等,实现非现场执法和预警。算法平台检测街面秩序(出店、游商、机动车、占道)和市容环境(垃圾、晾晒、垃圾桶、路面不洁、漂浮物、乱堆物料),助力及时处理问题,提升城市管理效率。
AI算法分析,智慧城管AI智能识别系统源码
|
3天前
|
机器学习/深度学习 人工智能 算法
揭秘深度学习中的优化算法
【4月更文挑战第24天】 在深度学习的广阔天地中,优化算法扮演着至关重要的角色。本文将深入探讨几种主流的优化算法,包括梯度下降法、随机梯度下降法、Adam等,并分析它们的特点和适用场景。我们将通过理论分析和实例演示,揭示这些优化算法如何帮助模型更高效地学习参数,从而提高模型的性能。
|
3天前
|
设计模式 算法 Java
[设计模式Java实现附plantuml源码~行为型]定义算法的框架——模板方法模式
[设计模式Java实现附plantuml源码~行为型]定义算法的框架——模板方法模式
|
11天前
|
算法 C#
winform车牌识别源码(纯算法)
使用C#和Winform开发的纯算法车牌识别系统,无需依赖外部框架。通过去雾、灰度化、均衡化、中值滤波等步骤实现车牌定位和识别。包含详细步骤及源码,适合学习研究。演示视频:[BV1yq4y1a7cb](https://www.bilibili.com/video/BV1yq4y1a7cb/?spm_id_from=333.337.search-card.all.click&vd_source=6d6d1b4c92d36f8d9ca8a23a286bae20)。
|
17天前
|
机器学习/深度学习 自然语言处理 算法
|
20天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用及优化策略
【4月更文挑战第8天】 在计算机视觉领域,深度学习技术已成为推动图像识别进步的关键力量。本文章旨在探讨深度学习模型在图像识别任务中的应用,并分析其性能提升的优化方法。通过对比传统机器学习方法,本文阐述了深度神经网络如何通过多层次特征提取有效识别复杂图像,并讨论了数据增强、网络结构调整、正则化技巧等优化策略。此外,文中还涉及了迁移学习与多任务学习在图像识别中的实际应用案例,以及未来发展趋势。
|
21天前
|
算法 索引
【算法与数据结构】深入二叉树实现超详解(全源码优化)
【算法与数据结构】深入二叉树实现超详解(全源码优化)
|
24天前
|
存储 算法 编译器
【数据结构】栈算法(算法原理+源码)
【数据结构】栈算法(算法原理+源码)
【数据结构】栈算法(算法原理+源码)
|
24天前
|
存储 人工智能 算法
哈夫曼算法详细讲解(算法+源码)
哈夫曼算法详细讲解(算法+源码)
|
26天前
|
机器学习/深度学习 存储 编解码
利用深度学习优化视频压缩效率的新策略
【4月更文挑战第2天】在数字媒体时代,视频数据占据了互联网流量的主导地位。随着高清、4K甚至8K视频内容的兴起,传统的视频压缩技术面临着巨大挑战。本文提出了一种基于深度学习的视频压缩优化方法,通过训练一个深度神经网络来预测视频帧间的残差信息,实现更高效的压缩。实验结果表明,该策略在保证视频质量的同时,能够显著提高压缩比,减少传输带宽和存储空间的需求。

热门文章

最新文章