Windows下安装Anaconda5.3.1+Python3.8+TensorFlow2.13.0-CPU版本总结

简介: Windows下安装Anaconda5.3.1+Python3.8+TensorFlow2.13.0-CPU版本总结

【1】Anaconda

清华的开源软件镜像站:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/下载,这里选择的是5.3.1版本。


然后正常安装就可以,安装路径这里选择的是E:\softinstall\Anaconda

安装后在Windows的开始菜单找到Anaconda Prompt并打开可以检测版本与环境信息。

base) C:\Users\Janus>conda --version
conda 4.5.11
(base) C:\Users\Janus>conda info --envs
# conda environments:
#
base                  *  E:\softinstall\Anaconda


也可以选择从官网下载最新版本,但是可能比较慢:https://www.anaconda.com/download/

这个官网下载是真的慢,花了蛮久下载了Anaconda3-2023.09-0-Windows-x86_64.exe,下面是百度云链接:

链接:https://pan.baidu.com/s/1IIyl5qVjCcUNrKzN8bZVvg?pwd=yyds 
提取码:yyds 

【2】TensorFlow2.13.0CPU版本

TensorFlow 2.13.0版本需要Python版本: Requires: Python >=3.8


① 切换源

因为国外的网站下载速度很慢,所以先把anaconda的源换成清华镜像:

conda config --add channels  http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64
conda config --add channels  http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64
conda config --set show_channel_urls yes


注意哦,这里是http且最后加了win-64。

当然也可以直接修改anaconda的配置文件.condarc,改文件在家目录下我这里是C:\Users\Janus

② 创建并激活环境

命令如下所示,当询问是否执行时,输入y(yes) 。

#创建环境
conda create --name python38 python=3.8
#激活环境
conda activate python38
#退出环境
conda deactivate


③ 在环境“python38”下安装TensorFlow

pip install tensorflow
#或者直接指定版本
pip install tensorflow==2.13.0

④ 查看TensorFlow版本

① 使用TensorFlow自带的版本查看功能

(python38) C:\Users\Janus>python
Python 3.8.18 (default, Sep 11 2023, 13:39:12) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> print(tf.version.VERSION)
2.13.0
>>> print(tf.__version__)
2.13.0
>>> exit()

这里表示安装的TensorFlow是2.13.0。

② 检查TensorFlow使用的Python版本

可以使用如下代码来确定正在使用哪个版本的Python:

import tensorflow as tf
print(tf.version.PYTHON_VERSION)

③ 使用命令行查看TensorFlow版本

可以使用pip show命令查看当前安装的TensorFlow版本:

(python38) E:\softinstall\Jupyter>pip show tensorflow
Name: tensorflow
Version: 2.13.0
Summary: TensorFlow is an open source machine learning framework for everyone.
Home-page: https://www.tensorflow.org/
Author: Google Inc.
Author-email: packages@tensorflow.org
License: Apache 2.0
Location: e:\softinstall\anaconda\envs\python38\lib\site-packages
Requires: tensorflow-intel
Required-by:

⑤ 测试Tensorflow

如下代码成功打印hello,tensorflow即说明成功。

import tensorflow as tf
tf.compat.v1.disable_eager_execution() 
hello = tf.constant('hello,tensorflow')
sess= tf.compat.v1.Session()
print(sess.run(hello))

【3】使用jupyter notebook

① 首先激活对应的conda环境

conda activate python38

② 安装ipykernel

在Anaconda 环境下优先使用conda install XXXX来安装包,如果不可以或者有特殊需求可采用pip install

(python38) C:\Users\Janus>conda install ipykernel
Solving environment: done
==> WARNING: A newer version of conda exists. <==
  current version: 4.5.11
  latest version: 23.10.0
Please update conda by running
    $ conda update -n base -c defaults conda
# All requested packages already installed.

③ 切换到编程文件保存的目录

默认在C盘,我这里是:E:\softinstall\Jupyter

(python38) C:\Users\Janus>E:
(python38) E:\>cd softinstall
(python38) E:\softinstall>cd Jupyter

④ 将环境写入notebook的kernel中

(python38) E:\softinstall\Jupyter>python -m ipykernel install --user --name python38 --display-name "Python (python38)"
Installed kernelspec python38 in C:\Users\Janus\AppData\Roaming\jupyter\kernels\python38

⑤ 打开jupyter

安装Anaconda后自带Jupyter Notebook。在anaconda命令行中执行 jupyter notebook 就可以。

(python38) E:\softinstall\Jupyter>jupyter notebook

浏览器页面选择Python(python38)的Kernel即可


【4】遇到的问题总结

① 执行脚本提示 No module named ‘tensorflow’

这里查看jupyter kernelspec list ,其地址指向一个包含kernel.json的文件夹,打开这个json文件,发现里面指向的python.exe仍然是python3.7。

(python38) C:\Users\Janus>jupyter kernelspec list
Available kernels:
  python3    E:\softinstall\Anaconda\share\jupyter\kernels\python3

重新安装Jupyter

conda install jupyter notebook

此外如果还需要什么环境比如pandas,那么在python38环境下安装即可,如canda install pandas

② No module named ‘matplotlib’

conda install  matplotlib


③ No module named ‘sklearn’

conda install scikit-learn

④ partially initialized module ‘charset_normalizer’ has no attribute ‘md__mypyc’ (most likely due to a circular import)

conda install chardet
#或者
pip install chardet
目录
相关文章
|
1月前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
85 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
1月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
3338 3
|
3月前
|
计算机视觉 Windows Python
windows下使用python + opencv读取含有中文路径的图片 和 把图片数据保存到含有中文的路径下
在Windows系统中,直接使用`cv2.imread()`和`cv2.imwrite()`处理含中文路径的图像文件时会遇到问题。读取时会返回空数据,保存时则无法正确保存至目标目录。为解决这些问题,可以使用`cv2.imdecode()`结合`np.fromfile()`来读取图像,并使用`cv2.imencode()`结合`tofile()`方法来保存图像至含中文的路径。这种方法有效避免了路径编码问题,确保图像处理流程顺畅进行。
325 1
|
1月前
|
PyTorch TensorFlow 算法框架/工具
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
本文提供了在Ubuntu 18.04操作系统的NVIDIA Jetson平台上安装深度学习和计算机视觉相关库的详细步骤,包括PyTorch、OpenCV、ONNX、TensorFlow等。
44 1
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
|
1月前
|
并行计算 TensorFlow 算法框架/工具
tensorflow安装
tensorflow安装——GPU版
44 2
|
1月前
|
并行计算 PyTorch TensorFlow
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
这篇文章详细介绍了如何在Anaconda环境下安装和配置深度学习所需的库和工具,包括PyTorch 1.6.0、CUDA 10.0、cuDNN 7.6.4、TensorFlow 1.15、pycocotools和pydensecrf,并提供了pip国内镜像源信息以及Jupyter Notebook和Anaconda的基本操作。
117 0
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
|
2月前
|
Windows Python
python获取windows机子上运行的程序名称
python获取windows机子上运行的程序名称
|
2月前
|
Python Windows
python之windows脚本启动bat
python之windows脚本启动bat
|
2月前
|
Linux 开发者 Python
从Windows到Linux,Python系统调用如何让代码飞翔🚀
【9月更文挑战第10天】在编程领域,跨越不同操作系统的障碍是常见挑战。Python凭借其“编写一次,到处运行”的理念,显著简化了这一过程。通过os、subprocess、shutil等标准库模块,Python提供了统一的接口,自动处理底层差异,使代码在Windows和Linux上无缝运行。例如,`open`函数在不同系统中以相同方式操作文件,而`subprocess`模块则能一致地执行系统命令。此外,第三方库如psutil进一步增强了跨平台能力,使开发者能够轻松编写高效且易维护的代码。借助Python的强大系统调用功能,跨平台编程变得简单高效。
40 0
|
3月前
|
并行计算 TensorFlow 算法框架/工具
Window安装TensorFlow-GPU版本
Window安装TensorFlow-GPU版本
59 0

热门文章

最新文章