有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~
1 基本定义
二阶多项式局部加权回归拟合算法是一种用于回归分析的方法,主要通过局部加权线性回归模型来实现。以下是对二阶多项式局部加权回归拟合算法的介绍:
- 局部加权线性回归模型:该模型是一种局部逼近方法,用于对输入变量和输出变量之间的关系进行建模。它通过在每个数据点处应用线性回归模型来逼近目标函数,从而得到局部的线性回归模型。
- 二阶多项式:在二阶多项式中,变量的最高指数为2。这意味着多项式的形式为ax²+bx+c,其中a、b和c是常数。
- 局部加权回归拟合算法:该算法基于局部加权线性回归模型,通过在每个数据点处应用线性回归来拟合数据。具体来说,算法会计算每个数据点对目标函数的权重,并根据这些权重来拟合局部的线性回归模型。
- 局部加权权重:在二阶多项式局部加权回归拟合算法中,每个数据点都会被赋予一个权重。这些权重是根据数据点与目标函数之间的相似度来确定的。权重较大的数据点对回归模型的贡献更大。
- 迭代优化:在算法执行过程中,会不断迭代优化局部加权线性回归模型,以得到最佳的拟合结果。这通常涉及到计算模型的参数、更新权重以及重新拟合模型等步骤。
- 性能评估:在得到拟合模型后,需要对模型进行性能评估,以确定其是否能够准确地预测目标变量的值。常用的性能评估指标包括均方误差、均方根误差、决定系数等。
- 应用领域:二阶多项式局部加权回归拟合算法在许多领域都有广泛的应用,例如机器学习、数据挖掘、时间序列分析等。它可以帮助人们更好地理解数据之间的关系,并预测未来的趋势和模式。
- 局部加权回归的泛化能力:由于二阶多项式局部加权回归拟合算法是基于局部信息的,因此它具有较强的泛化能力。即使在训练数据中存在噪声或异常值,该算法也能够较好地泛化到新的数据点上。
- 参数选择:在二阶多项式局部加权回归拟合算法中,需要选择合适的参数来控制模型的复杂度和拟合效果。例如,可以选择不同的多项式阶数、权重衰减参数等。这些参数的选择需要根据具体的问题和数据来确定。
- 计算效率:由于二阶多项式局部加权回归拟合算法是基于局部信息的,因此它的计算效率通常比全局线性回归更高。这使得该算法在处理大规模数据集时具有优势。
需要注意的是,虽然二阶多项式局部加权回归拟合算法具有许多优点,但在实际应用中也需要考虑一些限制和挑战。例如,对于非线性关系的数据,可能需要选择更高阶的多项式或使用其他类型的回归模型。此外,对于具有复杂结构的数据集,可能需要采用更复杂的模型或使用其他技术来处理。总之,二阶多项式局部加权回归拟合算法是一种强大的回归分析工具,它能够基于局部信息对数据进行拟合,并得到准确的结果。在实际应用中,需要根据具体的数据和问题来选择合适的算法参数和模型结构,以获得最佳的拟合效果。在二阶多项式局部加权回归拟合算法中,二阶多项式被用作局部回归模型的基函数。这意味着算法会使用二阶多项式来逼近目标函数,并在每个数据点处应用局部加权线性回归来得到最佳的拟合结果。需要注意的是,二阶多项式局部加权回归拟合算法是一种基于局部信息的算法,因此它对于数据的噪声和异常值具有较强的鲁棒性。同时,由于该算法是基于局部信息的,因此它能够更好地捕捉到数据的局部特征。
2 出图效果
附出图效果如下:
3 代码获取
【MATLAB】数据拟合第 10 期-二阶多项式的局部加权回归拟合算法
https://mbd.pub/o/bread/ZZiVlZpu
【MATLAB】史上最全的9种数据拟合算法全家桶:
https://mbd.pub/o/bread/ZJeWlZls
MATLAB 开源算法及绘图代码合集汇总一览
https://www.aliyundrive.com/s/9GrH3tvMhKf
提取码: f0w7
关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~