【MATLAB】数据拟合第10期-二阶多项式的局部加权回归拟合算法

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 【MATLAB】数据拟合第10期-二阶多项式的局部加权回归拟合算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

二阶多项式局部加权回归拟合算法是一种用于回归分析的方法,主要通过局部加权线性回归模型来实现。以下是对二阶多项式局部加权回归拟合算法的介绍:

  1. 局部加权线性回归模型:该模型是一种局部逼近方法,用于对输入变量和输出变量之间的关系进行建模。它通过在每个数据点处应用线性回归模型来逼近目标函数,从而得到局部的线性回归模型。
  2. 二阶多项式:在二阶多项式中,变量的最高指数为2。这意味着多项式的形式为ax²+bx+c,其中a、b和c是常数。
  3. 局部加权回归拟合算法:该算法基于局部加权线性回归模型,通过在每个数据点处应用线性回归来拟合数据。具体来说,算法会计算每个数据点对目标函数的权重,并根据这些权重来拟合局部的线性回归模型。
  4. 局部加权权重:在二阶多项式局部加权回归拟合算法中,每个数据点都会被赋予一个权重。这些权重是根据数据点与目标函数之间的相似度来确定的。权重较大的数据点对回归模型的贡献更大。
  5. 迭代优化:在算法执行过程中,会不断迭代优化局部加权线性回归模型,以得到最佳的拟合结果。这通常涉及到计算模型的参数、更新权重以及重新拟合模型等步骤。
  6. 性能评估:在得到拟合模型后,需要对模型进行性能评估,以确定其是否能够准确地预测目标变量的值。常用的性能评估指标包括均方误差、均方根误差、决定系数等。
  7. 应用领域:二阶多项式局部加权回归拟合算法在许多领域都有广泛的应用,例如机器学习、数据挖掘、时间序列分析等。它可以帮助人们更好地理解数据之间的关系,并预测未来的趋势和模式。
  8. 局部加权回归的泛化能力:由于二阶多项式局部加权回归拟合算法是基于局部信息的,因此它具有较强的泛化能力。即使在训练数据中存在噪声或异常值,该算法也能够较好地泛化到新的数据点上。
  9. 参数选择:在二阶多项式局部加权回归拟合算法中,需要选择合适的参数来控制模型的复杂度和拟合效果。例如,可以选择不同的多项式阶数、权重衰减参数等。这些参数的选择需要根据具体的问题和数据来确定。
  10. 计算效率:由于二阶多项式局部加权回归拟合算法是基于局部信息的,因此它的计算效率通常比全局线性回归更高。这使得该算法在处理大规模数据集时具有优势。

需要注意的是,虽然二阶多项式局部加权回归拟合算法具有许多优点,但在实际应用中也需要考虑一些限制和挑战。例如,对于非线性关系的数据,可能需要选择更高阶的多项式或使用其他类型的回归模型。此外,对于具有复杂结构的数据集,可能需要采用更复杂的模型或使用其他技术来处理。总之,二阶多项式局部加权回归拟合算法是一种强大的回归分析工具,它能够基于局部信息对数据进行拟合,并得到准确的结果。在实际应用中,需要根据具体的数据和问题来选择合适的算法参数和模型结构,以获得最佳的拟合效果。在二阶多项式局部加权回归拟合算法中,二阶多项式被用作局部回归模型的基函数。这意味着算法会使用二阶多项式来逼近目标函数,并在每个数据点处应用局部加权线性回归来得到最佳的拟合结果。需要注意的是,二阶多项式局部加权回归拟合算法是一种基于局部信息的算法,因此它对于数据的噪声和异常值具有较强的鲁棒性。同时,由于该算法是基于局部信息的,因此它能够更好地捕捉到数据的局部特征。

2 出图效果

附出图效果如下:


3 代码获取

【MATLAB】数据拟合第 10 期-二阶多项式的局部加权回归拟合算法

https://mbd.pub/o/bread/ZZiVlZpu

【MATLAB】史上最全的9种数据拟合算法全家桶:

https://mbd.pub/o/bread/ZJeWlZls

MATLAB 开源算法及绘图代码合集汇总一览

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~

目录
相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
20小时前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)