☆打卡算法☆LeetCode 222. 完全二叉树的节点个数 算法解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: ☆打卡算法☆LeetCode 222. 完全二叉树的节点个数 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“给定一颗二叉树,求出该树的节点个数。”

2、题目描述

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

1702384437098.jpg

示例 1:
输入: root = [1,2,3,4,5,6]
输出: 6
示例 2:
输入: root = []
输出: 0

二、解题

1、思路分析

题意要求给定一个完全二叉树,求出该数的节点个数。

对于任意二叉树,都可以通过广度优先搜索算法BFS计算节点个数,这道题给定的完全二叉树,可以使用完全二叉树的特点计算节点个数。

完全二叉树的特性可知,最左边的节点一定位于最底层,从根节点出发,每次访问左子节点,直到遇到叶子结点,该叶子结点即为完全二叉树的最左边的节点,经过的路径啊成都为最大层数h。

第i层包含2i个节点,最底层包含的节点数最少为1,最多为2h

因此对于最大层数为h的完全二叉树,可以通过二分查找的方式得到完全二叉树的节点个数。

根据节点的个数范围判断得到节点个数k:

  • 如果第k个节点存在,则节点个数一定大于或等于k
  • 如果第k个节点不存在,可以将查找的范围缩小一半,直到得到节点个数

2、代码实现

代码参考:

class Solution {
    public int countNodes(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int level = 0;
        TreeNode node = root;
        while (node.left != null) {
            level++;
            node = node.left;
        }
        int low = 1 << level, high = (1 << (level + 1)) - 1;
        while (low < high) {
            int mid = (high - low + 1) / 2 + low;
            if (exists(root, level, mid)) {
                low = mid;
            } else {
                high = mid - 1;
            }
        }
        return low;
    }
    public boolean exists(TreeNode root, int level, int k) {
        int bits = 1 << (level - 1);
        TreeNode node = root;
        while (node != null && bits > 0) {
            if ((bits & k) == 0) {
                node = node.left;
            } else {
                node = node.right;
            }
            bits >>= 1;
        }
        return node != null;
    }
}

1702384471541.jpg

3、时间复杂度

时间复杂度:O(log2 n)

其中n是完全二叉树的节点数。

空间复杂度:O(1)

只需要常数级的变量空间。

三、总结

在判断第k个节点是否存在的时候,用到了位运算得到第k个节点对应的路径,判断路径是否存在,就可以判断第k个节点是否存在。

比如说第k个节点位于第h层,则k的二进制表示包含h+1位,其中最高位是1,其余各位从高到底表示根节点到第k个节点的路径。

0表示移动左子节点,1表示移动到右子节点:

1702384486087.jpg

相关文章
|
3月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
56 0
|
3月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
64 3
|
5天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
29天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
155 30
|
8天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
1月前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
275 15
|
1天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
3月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
2月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
2月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
75 4

推荐镜像

更多