【MATLAB】史上最全的5种数据插值算法全家桶

简介: 【MATLAB】史上最全的5种数据插值算法全家桶


【MATLAB】史上最全的5种数据插值算法全家桶:

https://mbd.pub/o/bread/ZJmWlJdu

【MATLAB】史上最全的9种数据拟合算法全家桶:

https://mbd.pub/o/bread/ZJeWlZls

1 【MATLAB】一维interpl插值算法

一维interpl插值算法原理是在已知一系列离散数据点的情况下,通过插值计算得到任意一点的函数值。具体算法步骤如下:

  1. 输入一组已知的离散数据点 ,其中  是自变量, 是因变量。
  2. 对数据点按照  值从小到大进行排序。
  3. 对于给定的待插值点 ,找到插值区间 ,使得 。
  4. 利用已知点之间的直线作为插值函数,即根据公式  计算出插值点  的函数值 。
  5. 输出插值点  的函数值 。 一维interpl插值算法的核心思想是在已知数据点之间进行线性插值,通过利用已知点之间的直线来估计未知点的函数值。整个算法过程简单易懂,计算速度快,适用于一些简单的数据插值问题。

插值算法示意图

【MATLAB】一维interpl插值算法:

https://mbd.pub/o/bread/ZJmVmptt

2【MATLAB】一维interpn插值算法

一维interpn插值算法原理是在已知n维数据点的情况下,通过插值计算得到任意一点的函数值。具体算法步骤如下:

  1. 输入一组已知的n维离散数据点 ,其中  是自变量, 是因变量,,。
  2. 对数据点按照  值从小到大进行排序。
  3. 对于给定的待插值点 ,找到插值区间 ,使得 。
  4. 利用已知点之间的直线作为插值函数,即根据公式  计算出插值点  的函数值 。
  5. 输出插值点  的函数值 。 一维interpn插值算法的核心思想是在已知n维数据点之间进行线性插值,通过利用已知点之间的直线来估计未知点的函数值。整个算法过程相对于一维interpl插值算法稍微复杂一些,需要考虑多个自变量之间的相互作用,但是它仍然是一种简单易懂,计算速度快的插值方法。当然,如果数据点之间存在非线性关系,需要使用更高阶的插值方法来获得更高的插值精度。

插值算法示意图

【MATLAB】一维interpn插值算法:

https://mbd.pub/o/bread/ZJmWlJZy

3【MATLAB】二维interp2插值算法

二维interp2插值算法原理是在已知二维离散数据点的情况下,通过插值计算得到任意一点的函数值。具体算法步骤如下:

  1. 输入一组已知的二维离散数据点 ,其中  和  是自变量, 是因变量。
  2. 对数据点按照  和  值从小到大进行排序。
  3. 对于给定的待插值点 ,找到插值区间  和 ,使得 ,。
  4. 利用已知点之间的二维平面作为插值函数,即根据公式  计算出插值点  的函数值 。
  5. 输出插值点  的函数值 。 二维interp2插值算法的核心思想是在已知二维数据点之间进行二维平面插值,通过利用已知点之间的二维平面来估计未知点的函数值。整个算法过程相对于一维插值算法更加复杂一些,但是它仍然是一种简单易懂,计算速度快的插值方法。当然,如果数据点之间存在非线性关系,需要使用更高阶的插值方法来获得更高的插值精度。

插值算法示意图

【MATLAB】二维interp2插值算法:

https://mbd.pub/o/bread/ZJmWlJdp

4【MATLAB】二维griddata插值算法

二维griddata插值算法原理是在已知二维离散数据点的情况下,通过插值计算得到任意一点的函数值。具体算法步骤如下:

  1. 输入一组已知的二维离散数据点 ,其中  和  是自变量, 是因变量。
  2. 根据已知数据点,在二维平面上生成一个网格,网格点的坐标为 。
  3. 对于每个网格点 ,根据其周围已知数据点的函数值,计算出其函数值 。这里可以使用不同的插值方法,如线性插值、最近邻插值、三次样条插值等。
  4. 对于给定的待插值点 ,找到其所在的网格点 。
  5. 输出网格点  的函数值 。 二维griddata插值算法的核心思想是在已知二维数据点之间生成一个网格,通过利用周围已知数据点的函数值来估计未知点的函数值。相对于interp2插值算法,它的插值精度更高,但计算速度比较慢。同时,它也能够处理不规则的数据点分布,因此在实际应用中具有广泛的应用。

插值算法示意图

【MATLAB】二维griddata插值算法:

https://mbd.pub/o/bread/ZJmWlJdr

5【MATLAB】一维Lagrange插值算法

一维Lagrange插值算法原理是在已知n个数据点的情况下,通过构造一个n-1次的多项式函数来插值计算任意一点的函数值。具体算法步骤如下:

  1. 输入一组已知的离散数据点 ,其中  是自变量, 是因变量。
  2. 构造一个n-1次的多项式函数 ,满足在所有已知数据点上的函数值 。
  3. 利用Lagrange插值公式,计算出待插值点  的函数值 。具体公式为 。
  4. 输出插值点  的函数值 。 一维Lagrange插值算法的核心思想是通过构造一个多项式函数来拟合已知数据点,从而获得未知点的函数值。相对于线性插值算法,它可以拟合更复杂的曲线,但是在数据点数量比较大时,计算复杂度会很高,同时也容易出现Runge现象导致插值精度降低。因此,在实际应用中需要根据具体情况来选择合适的插值方法。

插值算法示意图

【MATLAB】一维Lagrange插值算法:

https://mbd.pub/o/bread/ZJmWlJdt

目录
相关文章
|
27天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
12天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
13天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
14天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
13天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
13天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
32 3
|
19天前
|
存储 编解码 负载均衡
数据分片算法
【10月更文挑战第25天】不同的数据分片算法适用于不同的应用场景和数据特点,在实际应用中,需要根据具体的业务需求、数据分布情况、系统性能要求等因素综合考虑,选择合适的数据分片算法,以实现数据的高效存储、查询和处理。
|
19天前
|
存储 缓存 算法
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
|
24天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。