Python 教程之 Pandas(7)—— 遍历 Pandas DataFrame 中的行和列

简介: Python 教程之 Pandas(7)—— 遍历 Pandas DataFrame 中的行和列

迭代是一个通用术语,用于一个接一个地获取某物的每一项。Pandas DataFrame 由行和列组成,因此,为了迭代数据帧,我们必须像字典一样迭代数据帧。在字典中,我们以与在数据帧中迭代相同的方式迭代对象的键。

在 Pandas Dataframe 中,我们可以通过两种方式迭代元素:

  • 遍历行
  • 遍历列

遍历行:

为了迭代行,我们可以使用三个函数 iteritems()、iterrows()、itertuples()。这三个函数将有助于对行进行迭代。  

使用 iterrows() 对行进行迭代

为了迭代行,我们应用了 iterrows() 函数,该函数返回每个索引值以及包含每行数据的序列。

代码#1:

# importing pandas as pd
import pandas as pd
# 列表字典
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
    'degree': ["MBA", "BCA", "M.Tech", "MBA"],
    'score':[90, 40, 80, 98]}
# 从字典创建数据框
df = pd.DataFrame(dict)
print(df)

image.png

现在我们应用 iterrows() 函数来获取行的每个元素。

# importing pandas as pd
import pandas as pd
# 列表字典
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
    'degree': ["MBA", "BCA", "M.Tech", "MBA"],
    'score':[90, 40, 80, 98]}
# 从字典创建数据框
df = pd.DataFrame(dict)
# 使用 iterrows() 函数遍历行
for i, j in df.iterrows():
  print(i, j)
  print()

输出: 

image.png

代码#2:

# importing pandas module
import pandas as pd
# 从csv文件制作数据框
data = pd.read_csv("nba.csv")
# 对于数据可视化,我们过滤前 3 个数据集
data.head(3)

image.png

现在我们应用 iterrows 来获取数据框中行的每个元素

# importing pandas module
import pandas as pd
# 从csv文件制作数据框
data = pd.read_csv("nba.csv")
for i, j in data.iterrows():
  print(i, j)
  print()

输出: 

image.png

使用 iteritems() 对行进行迭代

为了迭代行,我们使用 iteritems() 函数,该函数迭代每列作为键,以标签作为键的值对,以及作为系列对象的列值。

代码#1:

# importing pandas as pd
import pandas as pd
# 列表字典
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
    'degree': ["MBA", "BCA", "M.Tech", "MBA"],
    'score':[90, 40, 80, 98]}
# 从字典创建数据框
df = pd.DataFrame(dict)
print(df)

image.png

现在我们应用一个 iteritems() 函数来检索一行数据帧。

# importing pandas as pd
import pandas as pd
# 列表字典
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
    'degree': ["MBA", "BCA", "M.Tech", "MBA"],
    'score':[90, 40, 80, 98]}
# 从字典创建数据框
df = pd.DataFrame(dict)
# 使用 iteritems() 函数检索行
for key, value in df.iteritems():
  print(key, value)
  print()

输出: 

image.png

代码#2:

# importing pandas module
import pandas as pd
# 从csv文件制作数据框
data = pd.read_csv("nba.csv")
# 对于数据可视化,我们过滤前 3 个数据集
data.head(3)

输出: 

image.png

现在我们应用 iteritems() 以从数据框中检索行

# importing pandas module
import pandas as pd
# 从csv文件制作数据框
data = pd.read_csv("nba.csv")
for key, value in data.iteritems():
  print(key, value)
  print()

输出: 

image.png

使用 itertuples() 对行进行迭代

为了遍历行,我们应用了一个函数 itertuples(),这个函数为 DataFrame 中的每一行返回一个元组。元组的第一个元素将是行的相应索引值,而其余的值是行值。

代码#1:

# importing pandas as pd
import pandas as pd
# 列表字典
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
    'degree': ["MBA", "BCA", "M.Tech", "MBA"],
    'score':[90, 40, 80, 98]}
# 从字典创建数据框
df = pd.DataFrame(dict)
print(df)

image.png

现在我们应用一个 itertuples() 函数来获取每一行的元组

# importing pandas as pd
import pandas as pd
# 列表字典
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
    'degree': ["MBA", "BCA", "M.Tech", "MBA"],
    'score':[90, 40, 80, 98]}
# 从字典创建数据框
df = pd.DataFrame(dict)
# 使用 itertuples()
for i in df.itertuples():
  print(i)

输出: 

image.png

代码#2:

# importing pandas module
import pandas as pd
# 从csv文件制作数据框
data = pd.read_csv("nba.csv")
# 对于数据可视化,我们过滤前 3 个数据集
data.head(3)

image.png

现在我们应用一个 itertuples() 来获取每行的 atuple

# importing pandas module
import pandas as pd
# 从csv文件制作数据框
data = pd.read_csv("nba.csv")
for i in data.itertuples():
  print(i)

输出: 

image.png

遍历 Columns :

为了遍历列,我们需要创建一个数据框列的列表,然后遍历该列表以提取数据框列。

代码#1:

# importing pandas as pd
import pandas as pd
# 列表字典
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
    'degree': ["MBA", "BCA", "M.Tech", "MBA"],
    'score':[90, 40, 80, 98]}
# 从字典创建数据框
df = pd.DataFrame(dict)
print(df)

image.png

现在我们遍历列为了遍历列,我们首先创建一个数据框列的列表,然后遍历列表。

python

复制代码

# 创建数据框列的列表
columns = list(df)
for i in columns:
  # printing the third element of the column
  print (df[i][2])

输出: 

image.png

代码#2:

# importing pandas module
import pandas as pd
# 从csv文件制作数据框
data = pd.read_csv("nba.csv")
# 对于数据可视化,我们过滤前 3 个数据集
col = data.head(3)
col

image.png

现在我们遍历 CSV 文件中的列以遍历列,我们创建数据框列的列表并遍历列表

# 创建数据框列的列表
clmn = list(col)
for i in clmn:
  # 打印列的第三个元素
  print(col[i][2])

输出: 

image.png

目录
相关文章
|
15天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
43 0
|
13天前
|
SQL 数据采集 数据可视化
Pandas 数据结构 - DataFrame
10月更文挑战第26天
31 2
Pandas 数据结构 - DataFrame
|
9天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
21 2
|
14天前
|
SQL 数据采集 数据挖掘
Pandas 教程
10月更文挑战第25天
25 2
|
16天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
30 2
|
7天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
7天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
1月前
|
数据可视化 IDE 开发工具
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
227 13
|
1月前
|
监控 数据可视化 搜索推荐
【Python篇】matplotlib超详细教程-由入门到精通(下篇)2
【Python篇】matplotlib超详细教程-由入门到精通(下篇)
32 8
|
1月前
|
数据可视化 API 数据处理
【Python篇】matplotlib超详细教程-由入门到精通(上篇)
【Python篇】matplotlib超详细教程-由入门到精通(上篇)
82 5