Python 教程之 Numpy(11)—— 排序、搜索和计数

简介: Python 教程之 Numpy(11)—— 排序、搜索和计数

排序

排序是指以特定格式排列数据。排序算法指定以特定顺序排列数据的方式。最常见的顺序是数字或字典顺序。在 Numpy 中,我们可以使用库中提供的各种函数(如 sort、lexsort、argsort 等)执行各种排序操作。

numpy.sort(): 此函数返回数组的排序副本。

# 导入库
import numpy as np
# 沿第一轴排序
a = np.array([[12, 15], [10, 1]])
arr1 = np.sort(a, axis = 0)        
print ("Along first axis : \n", arr1)        
# 沿最后一个轴排序
a = np.array([[10, 15], [12, 1]])
arr2 = np.sort(a, axis = -1)        
print ("\nAlong first axis : \n", arr2)
a = np.array([[12, 15], [10, 1]])
arr1 = np.sort(a, axis = None)        
print ("\nAlong none axis : \n", arr1)

输出 :

Along first axis : 
 [[10  1]
 [12 15]]
Along first axis : 
 [[10 15]
 [ 1 12]]
Along none axis : 
 [ 1 10 12 15]

numpy.argsort(): 此函数返回将对数组进行排序的索引。

# 演示 numpy.argsort 工作的 Python 代码
import numpy as np
# 已创建 Numpy 数组
a = np.array([9, 3, 1, 7, 4, 3, 6])
# 未排序的数组打印
print('Original array:\n', a)
# 排序数组索引
b = np.argsort(a)
print('Sorted indices of original array->', b)
# 要使用排序索引获取排序数组 c 是由与 b 相同的 len 创建的临时数组
c = np.zeros(len(b), dtype = int)
for i in range(0, len(b)):
    c[i]= a[b[i]]
print('Sorted array->', c)

在 IDE 上运行

输出:

Original array:
 [9 3 1 7 4 3 6]
Sorted indices of original array-> [2 1 5 4 6 3 0]
Sorted array-> [1 3 3 4 6 7 9]

numpy.lexsort(): 此函数使用一系列键返回间接稳定排序。

# 演示 numpy.lexsort() 工作的 Python 代码
import numpy as np
# numpy数组创建第一列
a = np.array([9, 3, 1, 3, 4, 3, 6])
# 第二栏
b = np.array([4, 6, 9, 2, 1, 8, 7]) 
print('column a, column b')
for (i, j) in zip(a, b):
    print(i, ' ', j)
# 按 a 然后按 b 排序
ind = np.lexsort((b, a)) 
print('Sorted indices->', ind)

输出 :

column a, column b
9   4
3   6
1   9
3   2
4   1
3   8
6   7
Sorted indices-> [2 3 1 5 4 6 0]

image.png

搜索

搜索是一种操作或技术,可帮助查找给定元素或值在列表中的位置。根据是否找到正在搜索的元素,任何搜索都被称为成功或不成功。在 Numpy 中,我们可以使用库中提供的各种函数(如 argmax、argmin、nanaargmax 等)执行各种搜索操作。

numpy.argmax(): 此函数返回特定轴中数组的最大元素的索引。

# 说明 argmax() 工作的 Python 程序
import numpy as geek 
# 处理二维数组
array = geek.arange(12).reshape(3, 4)
print("INPUT ARRAY : \n", array)
# 没有提到轴,所以适用于整个阵列
print("\nMax element : ", geek.argmax(array))
# 根据索引返回最大元素的索引
print(("\nIndices of Max element : "
      , geek.argmax(array, axis=0)))
print(("\nIndices of Max element : "
      , geek.argmax(array, axis=1)))

输出 :

INPUT ARRAY : 
 [[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
Max element :  11
Indices of Max element :  [2 2 2 2]
Indices of Max element :  [3 3 3]

 

numpy.nanargmax(): 此函数返回忽略 NaN 的特定轴中数组的最大元素的索引。如果切片仅包含 NaN 和 Infs,则结果不可信。

# 说明 nanargmax() 工作的 Python 程序
import numpy as geek 
# 处理一维数组
array = [geek.nan, 4, 2, 3, 1]
print("INPUT ARRAY 1 : \n", array)
array2 = geek.array([[geek.nan, 4], [1, 3]])
# 根据忽略 NaN 的索引返回最大元素的索引
print(("\nIndices of max in array1 : "
       , geek.nanargmax(array)))
# 处理二维数组
print("\nINPUT ARRAY 2 : \n", array2)
print(("\nIndices of max in array2 : "
      , geek.nanargmax(array2)))
print(("\nIndices at axis 1 of array2 : "
      , geek.nanargmax(array2, axis = 1)))

输出 :

INPUT ARRAY 1 : 
 [nan, 4, 2, 3, 1]
Indices of max in array1 :  1
INPUT ARRAY 2 : 
 [[ nan   4.]
 [  1.   3.]]
Indices of max in array2 :  1
Indices at axis 1 of array2 :  [1 1]

numpy.argmin(): 此函数返回沿轴的最小值的索引。

# 说明 argmin() 工作的 Python 程序
import numpy as geek 
# 处理一维数组
array = geek.arange(8)
print("INPUT ARRAY : \n", array)
# 根据索引返回 min 元素的索引
print("\nIndices of min element : ", geek.argmin(array, axis=0))

在 IDE 上运行

输出 :

INPUT ARRAY : 
 [0 1 2 3 4 5 6 7]
Indices of min element :  0

image.png

Counting

numpy.count_nonzero() :计算数组中非零值的数量。

# 说明 count_nonzero() 工作的 Python 程序
import numpy as np
# 计算多个非零值
a = np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]])
b = np.count_nonzero(([[0,1,7,0,0],[3,0,0,2,19]]
                     , axis=0))
print("Number of nonzero values is :",a)
print("Number of nonzero values is :",b)

在 IDE 上运行

输出 :

Number of nonzero values is : 5
Number of nonzero values is : [1, 1, 1, 1, 1]


目录
相关文章
|
30天前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
238 1
|
2月前
|
缓存 供应链 监控
1688item_search_factory - 按关键字搜索工厂数据接口深度分析及 Python 实现
item_search_factory接口专为B2B电商供应链优化设计,支持通过关键词精准检索工厂信息,涵盖资质、产能、地理位置等核心数据,助力企业高效开发货源、分析产业集群与评估供应商。
|
30天前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
150 0
|
30天前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
101 0
|
2月前
|
JSON 监控 数据格式
1688 item_search_app 关键字搜索商品接口深度分析及 Python 实现
1688开放平台item_search_app接口专为移动端优化,支持关键词搜索、多维度筛选与排序,可获取商品详情及供应商信息,适用于货源采集、价格监控与竞品分析,助力采购决策。
|
3月前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
2月前
|
缓存 供应链 监控
VVIC seller_search 排行榜搜索接口深度分析及 Python 实现
VVIC搜款网seller_search接口提供服装批发市场的商品及商家排行榜数据,涵盖热销榜、销量排名、类目趋势等,支持多维度筛选与数据分析,助力选品决策、竞品分析与市场预测,为服装供应链提供有力数据支撑。
|
2月前
|
缓存 监控 算法
唯品会item_search - 按关键字搜索 VIP 商品接口深度分析及 Python 实现
唯品会item_search接口支持通过关键词、分类、价格等条件检索商品,广泛应用于电商数据分析、竞品监控与市场调研。结合Python可实现搜索、分析、可视化及数据导出,助力精准决策。
|
3月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
612 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码

热门文章

最新文章

推荐镜像

更多