Python数据挖掘实用案例——自动售货机销售数据分析与应用(一)

简介: Python数据挖掘实用案例——自动售货机销售数据分析与应用

一、前言

  本文将主要结合自动售货机的实际情况,对销售的历史数据进行处理,利用pyecharts库、Matplotlib库进行可视化分析,并对未来4周商品的销售额进行预测,从而为企业制定相应的自动售货机市场需求分析及销售建议提供参考依据。更多详细内容请参考《Python数据挖掘:入门进阶与实用案例分析》一书。

二、案例背景

  近年来,随着我国经济技术的不断提升,自动化机械在人们日常生活中扮演着越来越重要的角色,更多的被应用在不同的领域。而作为新的一种自动化零售业态,自动售货机在日常生活中应用越来越广泛。自动售货机销售产业在走向信息化、合理化同时,也面临着高度同质化、成本上升、毛利下降等诸多困难与问题,这也是大多数企业所会面临到的问题。

  为了提高市场占有率和企业的竞争力,某企业在广东省某8个市部署了376台自动售货机,但经过一段时间后,发现其经营状况并不理想。而如何了解销售额、订单数量与自动售货机数量之间的关系,畅销或滞销的商品又有哪些,自动售货机的销售情况等,已成为该企业亟待解决的问题。

三、分析目标

  获取了该企业某6个月的自动售货机销售数据,结合销售背景进行分析,并可视化展现销售现状,同时预测未来一段时间内的销售额,从而为企业制定营销策略提供一定的参考依据。

四、分析过程

五、数据预处理

1.清洗数据

1.1 合并订单表并处理缺失值

  由于订单表的数据是按月份分开存放的,为了方便后续对数据进行处理和可视化,所以需要对订单数据进行合并处理。同时,在合并订单表的数据后,为了了解订单表的缺失数据的基本情况,需要进行缺失值检测。合并订单表并进行缺失值检测,操作结果如图1所示。

                                            图1 合并订单表并进行缺失值检测的结果

由操作结果可知,合并后的订单数据有350867条记录,且订单表中含有缺失值的记录总共有279条,其数量相对较少,可直接使用删除法对其中的缺失值进行处理。

合并订单表、查看缺失值并处理缺失值,如代码清单1所示。

代码清单1 合并订单表、查看缺失值并处理缺失值

import pandas as pd
# 读取数据
data4 = pd.read_csv('../data/订单表2018-4.csv', encoding='gbk')
data5 = pd.read_csv('../data/订单表2018-5.csv', encoding='gbk')
data6 = pd.read_csv('../data/订单表2018-6.csv', encoding='gbk')
data7 = pd.read_csv('../data/订单表2018-7.csv', encoding='gbk')
data8 = pd.read_csv('../data/订单表2018-8.csv', encoding='gbk')
data9 = pd.read_csv('../data/订单表2018-9.csv', encoding='gbk')
# 合并数据
data = pd.concat([data4, data5, data6, data7, data8, data9], ignore_index=True)
print('订单表合并后的形状为', data.shape)
# 缺失值检测
print('订单表各属性的缺失值数目为:\n', data.isnull().sum())
data = data.dropna(how='any')  # 删除缺失值
1.2 增加“市”属性

为了满足后续的数据可视化需求,需要在订单表中增加“市”属性,操作结果如图2所示。

                                                               图2 增加“市”属性

增加“市”属性如代码清单2所示。

代码清单2 增加“市”属性

# 从省市区属性中提取市的信息,并创建新属性
data['市'] = data['省市区'].str[3: 6]
print('经过处理后的数据前5行为:\n', data.head())
1.3 处理订单表中的“商品详情”属性

  通过浏览订单表数据发现,在“商品详情”属性中存在有异名同义的情况,即两个名称不同的值所代表的实际意义是一致的,如“脉动青柠X1;”“脉动青柠x1;”等。因为此情况会对后面的分析结果造成一定的影响,所以需要对订单表中的“商品详情”属性进行处理,增加“商品名称”属性,如代码清单3所示。


代码清单3 处理订单表中的“商品详情”属性

# 定义一个需剔除字符的列表error_str
error_str = [' ', '(', ')', '(', ')', '0', '1', '2', '3', '4', '5', '6',
             '7', '8', '9', 'g', 'l', 'm', 'M', 'L', '听', '特', '饮', '罐',
             '瓶', '只', '装', '欧', '式', '&', '%', 'X', 'x', ';']
# 使用循环剔除指定字符
for i in error_str:
    data['商品详情'] = data['商品详情'].str.replace(i, '')
# 新建“商品名称”属性,用于新数据的存放
data['商品名称'] = data['商品详情']
1.4 处理“总金额(元)”属性

  此外,当浏览订单表数据时,发现在“总金额(元)”属性中,存在极少订单的金额很小,如0、0.01等。在现实生活中,这种记录存在的情况极少,且这部分数据不具有分析意义。因此,在本案例中,对订单的金额小于0.5的记录进行删除处理,操作结果如图3所示。

图3删除后的数据量

由操作结果可知,删除前的数据行列数目为(350617, 17),删除后的数据行列数目为(350450, 17)。

删除“总金额(元)”属性中订单的金额较少的记录如代码清单4所示。

代码清单4 删除“总金额(元)”属性中订单的金额较少的记录

# 删除金额较少的订单前的数据行列数目
print(data.shape)
# 删除金额较少的订单后的数据行列数目
data = data[data['总金额(元)'] >= 0.5]
print(data.shape)

2.属性选择

  因为订单表中的“手续费(元)”“收款方”“软件版本”“省市区”“商品详情”“退款金额(元)”等属性对本案例的分析没有意义,所以需要对其进行删除处理,选择合适的属性,操作的结果如图4所示。

                                                               图4属性选择/center>

属性选择如代码清单5所示。

代码清单5 属性选择

# 对于订单表数据选择合适的属性
data = data.drop(['手续费(元)', '收款方', '软件版本', '省市区', '商品详情', '退款金额(元)'], axis=1)
print('选择后,数据属性为:\n', data.columns.values)

3.属性规约

  在订单表“下单时间”属性中含有的信息量较多,并且存在概念分层的情况,需要对属性进行数据规约,提取需要的信息。提取相应的“小时”属性和“月份”属性,进一步泛化“小时”属性为“下单时间段”属性,规则如下:

Ø当小时≤5时,为“凌晨”;

Ø当5<小时≤8时,为“早晨”;

Ø当8<小时≤11时,为“上午”;

Ø当11<小时≤13时,为“中午”;

Ø当13<小时≤16时,为“下午”;

Ø当16<小时≤19时,为“傍晚”;

Ø当19<小时≤24,为“晚上”。

在Python中规约订单表的属性,如代码清单6所示。

代码清单6 规约订单表的属性

 

# 将时间格式的字符串转换为标准的时间格式
data['下单时间'] = pd.to_datetime(data['下单时间'])
data['小时'] = data['下单时间'].dt.hour  # 提取时间中的小时
data['月份'] = data['下单时间'].dt.month  # 提取时间中的月份
data['下单时间段'] = 'time'  # 新增“下单时间段”属性,并将其初始化为time
exp1 = data['小时'] <= 5  # 判断小时是否小于等于5
# 若条件为真,则时间段为凌晨
data.loc[exp1, '下单时间段'] = '凌晨'
# 判断小时是否大于5且小于等于8
exp2 = (5 < data['小时']) & (data['小时'] <= 8)
# 若条件为真,则时间段为早晨
data.loc[exp2, '下单时间段'] = '早晨'
# 判断小时是否大于8且小于等于11
exp3 = (8 < data['小时']) & (data['小时'] <= 11)
# 若条件为真,则时间段为上午
data.loc[exp3, '下单时间段'] = '上午'
# 判断小时是否小大于11且小于等于13
exp4 = (11 < data['小时']) & (data['小时'] <= 13)
# 若条件为真,则时间段为中午
data.loc[exp4, '下单时间段'] = '中午'
# 判断小时是否大于13且小于等于16
exp5 = (13 < data['小时']) & (data['小时'] <= 16)
# 若条件为真,则时间段为下午
data.loc[exp5, '下单时间段'] = '下午'
# 判断小时是否大于16且小于等于19
exp6 = (16 < data['小时']) & (data['小时'] <= 19)
# 若条件为真,则时间段为傍晚
data.loc[exp6, '下单时间段'] = '傍晚'
# 判断小时是否大于19且小于等于24
exp7 = (19 < data['小时']) & (data['小时'] <= 24)
# 若条件为真,则时间段为晚上
data.loc[exp7, '下单时间段'] = '晚上'
data.to_csv('../tmp/order.csv', index=False, encoding = 'gbk')

六、销售数据可视化分析

  在销售数据中含有的数据量较多,作为企业管理人员以及决策制定者,无法直观了解目前自动售货机的销售状况。因此需要利用处理好的数据进行可视化分析,直观地展示销售走势以及各区销售情况等,为决策者提供参考。

1.销售额和自动售货机数量的关系

探索6个月销售额和自动售货机数量之间的关系,并按时间走势进行可视化分析,结果如图5所示。

                               图5 销售额和自动售货机数量之间的关系/center>

  由图5可知,4月至7月,自动售货机的数量在增加,销售额也随着自动售货机的数量增加而增加;8月,虽然自动售货机数量减少了4台,但是销售额还在增加;9月相比8月的自动售货机数量减少了6台,销售额也随着减少。可以推断出销售额与自动售货机的数量存在一定的相关性,增加自动售货机的数量将会带来销售额的增长。出现该情况可能是因为广东处于亚热带,气候相对炎热,而7、8、9月的气温也相对较高,人们使用自动售货机的频率也相对较高。

探索销售额和自动售货机数量之间的关系如代码清单7所示。\

代码清单7 销售额和自动售货机数量之间的关系

import pandas as pd
import numpy as np
from pyecharts.charts import Line
from pyecharts import options as opts
import matplotlib.pyplot as plt
from pyecharts.charts import Bar
from pyecharts.charts import Pie

Python数据挖掘实用案例——自动售货机销售数据分析与应用(二)+https://developer.aliyun.com/article/1384980

相关文章
|
2天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
【4月更文挑战第25天】R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
|
3天前
|
人工智能 Python
【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案
【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案
8 0
|
8天前
|
机器学习/深度学习 数据挖掘 计算机视觉
python数据分析工具SciPy
【4月更文挑战第15天】SciPy是Python的开源库,用于数学、科学和工程计算,基于NumPy扩展了优化、线性代数、积分、插值、特殊函数、信号处理、图像处理和常微分方程求解等功能。它包含优化、线性代数、积分、信号和图像处理等多个模块。通过SciPy,可以方便地执行各种科学计算任务。例如,计算高斯分布的PDF,需要结合NumPy使用。要安装SciPy,可以使用`pip install scipy`命令。这个库极大地丰富了Python在科学计算领域的应用。
12 1
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
总结几个GPT的超实用之处【附带Python案例】
总结几个GPT的超实用之处【附带Python案例】
|
9天前
|
数据可视化 数据挖掘 Python
Python中数据分析工具Matplotlib
【4月更文挑战第14天】Matplotlib是Python的数据可视化库,能生成多种图表,如折线图、柱状图等。以下是一个绘制简单折线图的代码示例: ```python import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8, 10] plt.figure() plt.plot(x, y) plt.title(&#39;简单折线图&#39;) plt.xlabel(&#39;X轴&#39;) plt.ylabel(&#39;Y轴&#39;) plt.show() ```
13 1
|
9天前
|
数据采集 SQL 数据可视化
Python数据分析工具Pandas
【4月更文挑战第14天】Pandas是Python的数据分析库,提供Series和DataFrame数据结构,用于高效处理标记数据。它支持从多种数据源加载数据,包括CSV、Excel和SQL。功能包括数据清洗(处理缺失值、异常值)、数据操作(切片、过滤、分组)、时间序列分析及与Matplotlib等库集成进行数据可视化。其高性能底层基于NumPy,适合大型数据集处理。通过加载数据、清洗、分析和可视化,Pandas简化了数据分析流程。广泛的学习资源使其成为数据分析初学者的理想选择。
15 1
|
9天前
|
数据采集 数据可视化 数据挖掘
SciPy在数据分析中的应用:从数据清洗到可视化
【4月更文挑战第17天】# SciPy在数据分析中的应用:从数据清洗到可视化。文章探讨了SciPy在数据清洗(使用NumPy处理缺失值和异常值)、数据分析(描述性统计和模型拟合)以及数据可视化(结合Matplotlib和Seaborn进行图表绘制)中的作用。SciPy与其他Python库结合,为完整的数据分析流程提供了强大支持。
|
9天前
|
数据采集 数据可视化 数据挖掘
Seaborn在数据分析中的应用:案例分析与实践
【4月更文挑战第17天】本文介绍了Seaborn在数据分析中的应用,它是一个基于Python的可视化库,简化了复杂数据的图表创建。通过一个销售数据分析的案例,展示了数据加载、描述性统计、相关性分析、多变量分析及高级可视化步骤。实践技巧包括数据清洗、图表选择、颜色使用、注释标签和交互性。Seaborn助力高效数据探索和理解,提升分析效率。注意,实际使用需根据数据集和目标调整,并参考最新文档。
|
10天前
|
数据采集 数据可视化 数据挖掘
NumPy在数据分析中的核心应用
【4月更文挑战第17天】NumPy是Python数据分析基础库,核心应用包括数据结构化、预处理、统计分析和可视化。它提供`ndarray`多维数组对象及灵活索引,用于数据存储和处理。数据预处理支持缺失值处理,统计分析涵盖描述性统计和相关性分析。虽不直接支持数据可视化,但能与Matplotlib等库集成绘制图表。掌握NumPy能提升数据分析效率,助于挖掘数据价值。
|
10天前
|
存储 数据可视化 数据挖掘
实战案例:Pandas在金融数据分析中的应用
【4月更文挑战第16天】本文通过实例展示了Pandas在金融数据分析中的应用。案例中,一家投资机构使用Pandas加载、清洗股票历史价格数据,删除无关列并重命名,将日期设为索引。接着,数据被可视化以观察价格走势,进行基本统计分析了解价格分布,以及计算移动平均线来平滑波动。Pandas的便捷功能在金融数据分析中体现出高效率和实用性。