数据结构单链表之检测和删除链表中的循环 | 第十三套

简介: 数据结构单链表之检测和删除链表中的循环 | 第十三套

编写一个函数detectAndRemoveLoop() 来检查给定的链表是否包含循环,如果存在循环,则删除循环并返回 true。如果列表不包含循环,则返回 false。下图显示了一个带有循环的链表。detectAndRemoveLoop() 必须将下面的列表更改为 1->2->3->4->5->NULL。

1.png

我们还建议阅读以下帖子作为此处讨论的解决方案的先决条件。编写一个 C 函数来检测链表中的循环 在尝试删除循环之前,我们必须检测它。上面帖子中讨论的技术可用于检测循环。要移除循环,我们需要做的就是获取指向循环最后一个节点的指针。例如,上图中值为 5 的节点。一旦我们有了指向最后一个节点的指针,我们就可以将这个节点的下一个节点设置为 NULL,循环就消失了。

我们可以轻松地使用哈希或访问节点技术(在上面提到的帖子中讨论过)来获取指向最后一个节点的指针。想法很简单:下一个已被访问(或散列)的第一个节点是最后一个节点。

我们也可以使用弗洛伊德循环检测算法来检测和删除循环。在弗洛伊德算法中,慢指针和快指针在循环节点相遇。我们可以使用这个循环节点来移除循环。当使用 Floyd 算法进行循环检测时,有以下两种不同的消除循环方法。

方法一(一一查) 我们知道,当快慢指针在一个公共点相遇时,弗洛伊德循环检测算法就终止了。我们也知道这个公共点是循环节点之一(上图中的 2 或 3 或 4 或 5)。将 this 的地址存储在一个指针变量中,比如 ptr2。之后,从链表的头部开始,一一检查节点是否可以从 ptr2 到达。每当我们找到一个可达的节点时,我们就知道这个节点是链表中循环的起始节点,我们可以得到这个节点的前一个节点的指针。

输出:

Linked List after removing loop 
50 20 15 4 10

方法二(更好的解决方案)  

  1. 该方法还依赖于 Floyd's Cycle 检测算法。
  2. 使用 Floyd 循环检测算法检测循环并获取指向循环节点的指针。
  3. 计算循环中的节点数。让计数为k。
  4. 将一个指针固定到头部,另一个指向头部的第 k 个节点。
  5. 以相同的速度移动两个指针,它们将在循环起始节点相遇。
  6. 获取指向循环最后一个节点的指针并将其下一个设为 NULL。
#include <bits/stdc++.h>
using namespace std;
struct Node {
  int data;
  struct Node* next;
};
void removeLoop(struct Node*, struct Node*);
int detectAndRemoveLoop(struct Node* list)
{
  struct Node *slow_p = list, *fast_p = list;
  while (slow_p && fast_p && fast_p->next) {
    slow_p = slow_p->next;
    fast_p = fast_p->next->next;
    if (slow_p == fast_p) {
      removeLoop(slow_p, list);
      /* Return 1 to indicate that loop is found */
      return 1;
    }
  }
  return 0;
}
void removeLoop(struct Node* loop_node, struct Node* head)
{
  struct Node* ptr1 = loop_node;
  struct Node* ptr2 = loop_node;
  unsigned int k = 1, i;
  while (ptr1->next != ptr2) {
    ptr1 = ptr1->next;
    k++;
  }
  ptr1 = head;
  ptr2 = head;
  for (i = 0; i < k; i++)
    ptr2 = ptr2->next;
  while (ptr2 != ptr1) {
    ptr1 = ptr1->next;
    ptr2 = ptr2->next;
  }
  while (ptr2->next != ptr1)
    ptr2 = ptr2->next;
  ptr2->next = NULL;
}
void printList(struct Node* node)
{
  while (node != NULL) {
    cout << node->data << " ";
    node = node->next;
  }
}
struct Node* newNode(int key)
{
  struct Node* temp = new Node();
  temp->data = key;
  temp->next = NULL;
  return temp;
}
int main()
{
  struct Node* head = newNode(50);
  head->next = newNode(20);
  head->next->next = newNode(15);
  head->next->next->next = newNode(4);
  head->next->next->next->next = newNode(10);
  head->next->next->next->next->next = head->next->next;
  detectAndRemoveLoop(head);
  cout << "Linked List after removing loop \n";
  printList(head);
  return 0;
}

输出:

Linked List after removing loop 
50 20 15 4 10 


目录
相关文章
|
存储 算法 Perl
数据结构实验之链表
本实验旨在掌握线性表中元素的前驱、后续概念及链表的建立、插入、删除等算法,并分析时间复杂度,理解链表特点。实验内容包括循环链表应用(约瑟夫回环问题)、删除单链表中重复节点及双向循环链表的设计与实现。通过编程实践,加深对链表数据结构的理解和应用能力。
244 4
|
6月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
183 0
|
11月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
412 30
|
11月前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
542 25
|
机器学习/深度学习 存储 C++
【C++数据结构——线性表】单链表的基本运算(头歌实践教学平台习题)【合集】
本内容介绍了单链表的基本运算任务,涵盖线性表的基本概念、初始化、销毁、判定是否为空表、求长度、输出、求元素值、按元素值查找、插入和删除数据元素等操作。通过C++代码示例详细解释了顺序表和链表的实现方法,并提供了测试说明、通 - **任务描述**:实现单链表的基本运算。 - **相关知识**:包括线性表的概念、初始化、销毁、判断空表、求长度、输出、求元素值、查找、插入和删除等操作。 - **测试说明**:平台会对你编写的代码进行测试,提供测试输入和预期输出。 - **通关代码**:给出了完整的C++代码实现。 - **测试结果**:展示了测试通过后的预期输出结果。 开始你的任务吧,祝你成功!
573 5
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
400 5
|
算法
数据结构之购物车系统(链表和栈)
本文介绍了基于链表和栈的购物车系统的设计与实现。该系统通过命令行界面提供商品管理、购物车查看、结算等功能,支持用户便捷地管理购物清单。核心代码定义了商品、购物车商品节点和购物车的数据结构,并实现了添加、删除商品、查看购物车内容及结算等操作。算法分析显示,系统在处理小规模购物车时表现良好,但在大规模购物车操作下可能存在性能瓶颈。
348 0
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
321 59
|
7月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
153 0
栈区的非法访问导致的死循环(x64)