C++前缀和算法:合并石头的最低成本原理、源码及测试用例(二)

简介: C++前缀和算法:合并石头的最低成本原理、源码及测试用例

旧版代码

template<class T>
 void MinSelf(T* seft, const T& other)
 {
   *seft = min(*seft, other);
 }
class Solution {
 public:
   int mergeStones(vector<int>& stones, int k) {
     m_k = k;
     m_c = stones.size();
     m_dp.assign(m_c + 1, vector<vector<int>>(m_c, vector<int>(k + 1, 1000 * 1000 * 100)));
     vector<int> vPreSum(1);
     for (const auto& stone : stones)
     {
       vPreSum.push_back(vPreSum.back() + stone);
     }
     for (int pos = 0; pos + 1 - 1 < m_c; pos++)
     {
       m_dp[1][pos][1] = 0;
     }
     for (int len = 2; len <= m_c; len++)
     {
       for (int pos = 0; pos+len <= m_c; pos++)
       {
         //int iEnd = pos + len - 1;
         for (int iHeapNum = 2; iHeapNum <= k; iHeapNum++)
         {
           for (int iPreLen = 1; iPreLen < len; iPreLen += k - 1)
           {
             MinSelf(&m_dp[len][pos][iHeapNum], m_dp[iPreLen][pos][1] + m_dp[len - iPreLen][pos + iPreLen][iHeapNum - 1]);
           }
         }
         m_dp[len][pos][1] = m_dp[len][pos][k] + vPreSum[pos + len] - vPreSum[pos];
       }      
     }    
     return (m_dp[m_c][0][1] >= 1000 * 1000 * 100) ? -1 : m_dp[m_c][0][1];
   }
   int m_k;
   int m_c;
   vector<vector<vector<int>>> m_dp;
 };

旧版代码2

template<class T>
 void MinSelf(T* seft, const T& other)
 {
   *seft = min(*seft, other);
 }
 class Solution {
 public:
   int mergeStones(vector<int>& stones, int k) {
     m_k = k;
     m_c = stones.size();
     m_dp.assign(m_c + 1, vector<int>(m_c, ( 1000 * 1000 * 100)));
     if ((m_c-1) % (k - 1) != 0)
     {
       return -1;
     }
     vector<int> vPreSum(1);
     for (const auto& stone : stones)
     {
       vPreSum.push_back(vPreSum.back() + stone);
     }
     for (int pos = 0; pos + 1 - 1 < m_c; pos++)
     {
       m_dp[1][pos] = 0;
     }
     for (int len = 2; len <= m_c; len++)
     {
       for (int pos = 0; pos+len <= m_c; pos++)
       {
         for (int iPreLen = 1; iPreLen < len; iPreLen += k - 1)
         {
           MinSelf(&m_dp[len][pos], m_dp[iPreLen][pos] + m_dp[len - iPreLen][pos + iPreLen]);
         }
         if ((len-1) % (k - 1) == 0)
         {
           m_dp[len][pos] +=  vPreSum[pos + len] - vPreSum[pos];
         }
       }      
     }    
     return (m_dp[m_c][0] >= 1000 * 1000 * 100) ? -1 : m_dp[m_c][0];
   }
   int m_k;
   int m_c;
   vector<vector<int>> m_dp;
 };

旧版代码三

class Solution {
public:
int mergeStones(vector& stones, int k) {
m_c = stones.size();
if (0 != (m_c - 1) % (k-1))
{
return -1;
}
vector vPreSum(1);
for (const auto& n : stones)
{
vPreSum.emplace_back(vPreSum.back() + n);
}
vector<vector> vLenBegin(m_c + 1, vector(m_c));
for (int len = k; len <= m_c; len++)
{
for (int begin = 0; begin + len - 1 < m_c; begin++)
{
int iMaxPreScore = INT_MAX;
for (int lLen = 1; lLen < len; lLen += (k - 1))
{
int rLen = len - lLen;
iMaxPreScore = min(iMaxPreScore, vLenBegin[lLen][begin] + vLenBegin[rLen][begin + lLen]);
}
if (0 == (len - 1) % (k - 1))
{
iMaxPreScore += vPreSum[begin + len] - vPreSum[begin];
}
vLenBegin[len][begin] = iMaxPreScore ;
}
}
return vLenBegin.back().front();
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

鄙人想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨家名称的来源:有所得以墨记之。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境:

VS2022 C++17

相关文章
|
2月前
|
算法 机器人 定位技术
【VRPTW】基于matlab秃鹰算法BES求解带时间窗的骑手外卖配送路径规划问题(目标函数:最优路径成本 含服务客户数量 服务时间 载量 路径长度)(Matlab代码实现)
【VRPTW】基于matlab秃鹰算法BES求解带时间窗的骑手外卖配送路径规划问题(目标函数:最优路径成本 含服务客户数量 服务时间 载量 路径长度)(Matlab代码实现)
|
5月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
114 2
|
24天前
|
机器学习/深度学习 传感器 算法
基于matlab瞬态三角哈里斯鹰算法TTHHO多无人机协同集群避障路径规划(目标函数:最低成本:路径、高度、威胁、转角)(Matlab代码实现)
基于matlab瞬态三角哈里斯鹰算法TTHHO多无人机协同集群避障路径规划(目标函数:最低成本:路径、高度、威胁、转角)(Matlab代码实现)
|
6月前
|
存储 算法 C++
Windows共享文件:探秘C++实现的B树索引算法奇境
在数字化时代,Windows共享文件的高效管理至关重要。B树算法以其自平衡多路搜索特性,在文件索引与存储优化中表现出色。本文探讨B树在Windows共享文件中的应用,通过C++实现具体代码,展示其构建文件索引、优化数据存储的能力,提升文件检索效率。B树通过减少磁盘I/O操作,确保查询高效,为企业和个人提供流畅的文件共享体验。
|
1月前
|
机器学习/深度学习 并行计算 算法
基于改进的粒子群算法PSO求解电容器布局优化问题HV配电中的功率损耗和成本 IEEE34节点(Matlab代码实现)
基于改进的粒子群算法PSO求解电容器布局优化问题HV配电中的功率损耗和成本 IEEE34节点(Matlab代码实现)
|
18天前
|
算法 安全 数据可视化
基于多目标鲸鱼优化算法(NSWOA)求解地铁隧道竖向位移和成本的双目标求解(以铁道科学报与工程文章为例)研究(Matlab代码实现)
基于多目标鲸鱼优化算法(NSWOA)求解地铁隧道竖向位移和成本的双目标求解(以铁道科学报与工程文章为例)研究(Matlab代码实现)
|
7月前
|
存储 负载均衡 算法
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
181 15
|
7月前
|
运维 监控 算法
解读 C++ 助力的局域网监控电脑网络连接算法
本文探讨了使用C++语言实现局域网监控电脑中网络连接监控的算法。通过将局域网的拓扑结构建模为图(Graph)数据结构,每台电脑作为顶点,网络连接作为边,可高效管理与监控动态变化的网络连接。文章展示了基于深度优先搜索(DFS)的连通性检测算法,用于判断两节点间是否存在路径,助力故障排查与流量优化。C++的高效性能结合图算法,为保障网络秩序与信息安全提供了坚实基础,未来可进一步优化以应对无线网络等新挑战。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
【配送路径规划】基于螳螂虾算法MShOA求解带时间窗的骑手外卖配送路径规划问题(目标函数:最优路径成本 含服务客户数量 服务时间 载量 路径长度)研究(Matlab代码实现)
【配送路径规划】基于螳螂虾算法MShOA求解带时间窗的骑手外卖配送路径规划问题(目标函数:最优路径成本 含服务客户数量 服务时间 载量 路径长度)研究(Matlab代码实现)
|
2月前
|
算法 Python
【配送路径规划】基于遗传算法求解带时间窗的电动汽车配送路径规划(目标函数:最小成本;约束条件:续驶里程、额定载重量、数量、起始点)研究(Matlab代码实现)
【配送路径规划】基于遗传算法求解带时间窗的电动汽车配送路径规划(目标函数:最小成本;约束条件:续驶里程、额定载重量、数量、起始点)研究(Matlab代码实现)

热门文章

最新文章