一. 算法效率
1.1 算法的复杂度
算法在编写成可执行程序后,运行时需要耗费时间资源和空间 ( 内存 ) 资源 。因此 衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的 ,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间 。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计 算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
二. 时间复杂度
2.1 时间复杂度的概念
时间复杂度的定义:在计算机科学中, 算法的时间复杂度是一个函数 ,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法 的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
// 请计算一下Func1中++count语句总共执行了多少次? void Func1(int N) { int count = 0; for (int i = 0; i < N ; ++ i) { for (int j = 0; j < N ; ++ j) { ++count; } } for (int k = 0; k < 2 * N ; ++ k) { ++count; } int M = 10; while (M--) { ++count; } printf("%d\n", count); }
Func1 执行的基本操作次数 :F(N)=N^2+2*N+10
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要 大概执行次数,那么这 里我们使用大 O 的渐进表示法。
2.2 大O的渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大 O 阶方法:
1 、用常数 1 取代运行时间中的所有加法常数。
2 、在修改后的运行次数函数中,只保留最高阶项。
3 、如果最高阶项存在且不是 1 ,则去除与这个项目相乘的常数。得到的结果就是大 O 阶。
使用大 O 的渐进表示法以后, Func1 的时间复杂度为
O(N^2)
通过上面我们会发现大 O 的渐进表示法 去掉了那些对结果影响不大的项 ,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
在实际中一般情况关注的是算法的最坏运行情况
2.3 常见时间复杂度计算举例
实例 1 :
// 计算Func2的时间复杂度? void Func2(int N) { int count = 0; for (int k = 0; k < 2 * N ; ++ k) { ++count; } int M = 10; while (M--) { ++count; } printf("%d\n", count); }
解析: 基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)
实例 2:
// 计算Func3的时间复杂度? void Func3(int N, int M) { int count = 0; for (int k = 0; k < M; ++ k) { ++count; } for (int k = 0; k < N ; ++ k) { ++count; } printf("%d\n", count); }
解析: 基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
实例 3:
// 计算Func4的时间复杂度? void Func4(int N) { int count = 0; for (int k = 0; k < 100; ++ k) { ++count; } printf("%d\n", count); }
解析: 基本操作执行了100次,通过推导大O阶方法,时间复杂度为 O(1)
实例 4:
// 计算BubbleSort的时间复杂度? void BubbleSort(int* a, int n) { assert(a); for (size_t end = n; end > 0; --end) { int exchange = 0; for (size_t i = 1; i < end; ++i) { if (a[i-1] > a[i]) { Swap(&a[i-1], &a[i]); exchange = 1; } } if (exchange == 0) break; } }
解析: 基本操作执行最好N次,最坏执行了1+2+.......+(n-1)次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2).
实例5 :
// 计算BinarySearch的时间复杂度? int BinarySearch(int* a, int n, int x) { assert(a); int begin = 0; int end = n-1; // [begin, end]:begin和end是左闭右闭区间,因此有=号 while (begin <= end) { int mid = begin + ((end-begin)>>1);//也可写成int mid = begin + (end-begin)/2; if (a[mid] < x) begin = mid+1; else if (a[mid] > x) end = mid-1; else return mid; } return -1; }
解析:这是二分查找, 基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN).
ps: logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。
实例6 :
// 计算阶乘递归Fac的时间复杂度? long long Fac(size_t N) { if(0 == N) return 1; return Fac(N-1)*N; }
解析:基本操作递归了N次,时间复杂度为O(N)。
实例7 :
// 计算斐波那契递归Fib的时间复杂度? long long Fib(size_t N) { if(N < 3) return 1; return Fib(N-1) + Fib(N-2); }
解析:基本操作递归了2^N次,时间复杂度为O(2^N)。
三. 空间复杂度
空间复杂度也是一个数学表达式,是对一个算法在运行过程中 临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用 大 O 渐进表示法 。
注意: 函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
实例1:
// 计算BubbleSort的空间复杂度? void BubbleSort(int* a, int n) { assert(a); for (size_t end = n; end > 0; --end) { int exchange = 0; for (size_t i = 1; i < end; ++i) { if (a[i-1] > a[i]) { Swap(&a[i-1], &a[i]); exchange = 1; } } if (exchange == 0) break; } }
解析:冒泡排序使用了常数个额外空间,所以空间复杂度为 O(1)
实例 2 :
// 计算Fibonacci的空间复杂度? // 返回斐波那契数列的前n项 long long* Fibonacci(size_t n) { if(n==0) return NULL; long long * fibArray = (long long *)malloc((n+1) * sizeof(long long)); fibArray[0] = 0; fibArray[1] = 1; for (int i = 2; i <= n ; ++i) { fibArray[i] = fibArray[i - 1] + fibArray [i - 2]; } return fibArray; }
解析: 动态开辟了N+1个空间,空间复杂度为 O(N)
实例 3 :
// 计算阶乘递归Fac的空间复杂度? long long Fac(size_t N) { if(N == 0) return 1; return Fac(N-1)*N; }
解析:递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)