动态规划、回溯搜索、分治算法、分支定界算法

简介: 动态规划、回溯搜索、分治算法、分支定界算法

介绍

当解决一些复杂问题时,我们常常需要采用一些高级的算法来提高效率和准确性。以下是动态规划、回溯搜索、分治算法和分支定界算法的简介:

1. 动态规划(Dynamic Programming):动态规划是一种将问题分解为子问题,并通过解决子问题来解决原始问题的算法思想。它通常适用于具有重叠子问题和最优子结构性质的问题。动态规划包括以下几个步骤:定义子问题,建立状态转移方程,确定初始条件,迭代求解子问题,最后得到原问题的解。通过存储中间结果,动态规划可以避免重复计算,提高算法的效率。常见动态规划问题包括最长公共子序列、背包问题等。

2. 回溯搜索(Backtracking):回溯搜索是一种通过穷举所有可能的解空间来解决问题的算法方法。它通过尝试所有可能的选择,逐步构建解,并在遇到无效选择时回退到上一步。回溯搜索通常采用递归函数实现,每一步都会有多个选择,并递归地对每个选择进行探索,直到找到解或者遍历完所有可能的选择。常见的回溯搜索问题包括八皇后问题、图的深度优先搜索等。

3. 分治算法(Divide and Conquer):分治算法是将一个大问题划分为若干个相同或类似的子问题,并通过合并子问题的解来得到原问题的解。分治算法通常采用递归方式实现,将原问题划分为更小的子问题,逐步解决子问题,最后将子问题的解合并起来得到问题的解。分治算法常见的应用包括归并排序、快速排序和最大子数组问题等。

4. 分支定界算法(Branch and Bound):分支定界算法是一种通过剪枝操作来减少搜索空间的技术。它通过将问题分解为多个子问题,并通过优先处理具有更有希望的解的子问题来提前终止对其他无效子问题的搜索。分支定界算法通常用于求解最优化问题,其中通过界限函数来估计未搜索部分的最优解,并根据界限函数的值来选择具有更高潜力的子问题进行搜索。常见的分支定界算法包括旅行商问题、0-1背包问题等。

举例

动态规划示例:在 MATLAB 中实现一个求解斐波那契数列的动态规划算法。

function result = fibonacci_DP(n)
    if n <= 0
        result = 0;
        return;
    end
    dp = zeros(1, n+1);
    dp(1) = 0;
    dp(2) = 1;
    for i = 3:n+1
        dp(i) = dp(i-1) + dp(i-2);
    end
    result = dp(n+1);
end

调用函数 fibonacci_DP(6) 可以得到斐波那契数列的第六个数的结果。

回溯搜索示例:使用回溯搜索算法在 MATLAB 中实现一个解决八皇后问题的函数。

function result = solve_n_queens(n)
    result = zeros(n, n);
    backtrack(1);
    function backtrack(row)
        if row > n
            result = result;
            return;
        end
        for col = 1:n
            if is_valid(row, col)
                result(row, col) = 1;
                backtrack(row + 1);
                result(row, col) = 0;
            end
        end
    end
    function valid = is_valid(row, col)
        for i = 1:row-1
            if result(i, col) == 1
                valid = false;
                return;
            end
            if col-i >= 1 && result(row-i, col-i) == 1
                valid = false;
                return;
            end
            if col+i <= n && result(row-i, col+i) == 1
                valid = false;
                return;
            end
        end
        valid = true;
    end
end

调用函数 solve_n_queens(8) 可以得到一个解决八皇后问题的结果。

分治算法示例:使用 MATLAB 实现归并排序算法。

function sorted_array = merge_sort(array)
    len = length(array);
    if len <= 1
        sorted_array = array;
        return;
    end
    mid = ceil(len/2);
    left = merge_sort(array(1:mid));
    right = merge_sort(array(mid+1:end));
    sorted_array = merge(left, right);
end
function merged_array = merge(left, right)
    merged_array = [];
    i = 1;
    j = 1;
    while i <= length(left) && j <= length(right)
        if left(i) < right(j)
            merged_array = [merged_array, left(i)];
            i = i + 1;
        else
            merged_array = [merged_array, right(j)];
            j = j + 1;
        end
    end
    if i <= length(left)
        merged_array = [merged_array, left(i:end)];
    end
    if j <= length(right)
        merged_array = [merged_array, right(j:end)];
    end
end

调用函数 merge_sort([9, 6, 2, 4, 1, 5]) 可以得到一个归并排序后的数组。

分支定界算法示例:使用 MATLAB 解决旅行商问题的近似算法。

function [bestTour, bestDist] = branchAndBoundTSP(distances)
    % 初始化最佳路径和最短距离
    n = size(distances, 1);
    bestTour = zeros(1, n);
    bestDist = Inf;
    % 初始化顶点状态、路径和距离
    visited = false(1, n);
    path = zeros(1, n);
    curDist = 0;
    % 从起点开始递归搜索
    search(1);
    function search(node)
        % 更新当前路径和距离
        visited(node) = true;
        path(curDist + 1) = node;
        curDist = curDist + distances(path(curDist), node);
        % 如果当前距离已经超过最短距离,则进行剪枝
        if curDist >= bestDist
            return;
        end
        % 如果已经遍历所有节点,更新最佳路径和最短距离
        if all(visited) && curDist + distances(node, 1) < bestDist
            bestTour = path(1:curDist + 1);
            bestDist = curDist + distances(node, 1);
        end
        % 递归搜索下一个未访问的节点
        for next = 1:n
            if ~visited(next)
                search(next);
            end
        end
        % 恢复节点的状态
        visited(node) = false;
        curDist = curDist - distances(path(curDist), node);
    end
end

使用示例:

% 创建一个随机距离矩阵
n = 5;
distances = randi([1, 10], n, n);
distances = triu(distances, 1) + triu(distances, 1)';
% 调用分支定界法解决旅行商问题
[bestTour, bestDist] = branchAndBoundTSP(distances);
% 打印最佳路径和最短距离
disp('最佳路径:');
disp(bestTour);
disp('最短距离:');
disp(bestDist);


相关文章
|
1天前
|
供应链 算法
【算法】——快排,分治算法合集
本文主要介绍排序中的快排思想的应用,做到一法通万法的效果
|
1月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
1月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
53 2
|
1月前
|
算法 搜索推荐 数据库
二分搜索:高效的查找算法
【10月更文挑战第29天】通过对二分搜索的深入研究和应用,我们可以不断挖掘其潜力,为各种复杂问题提供高效的解决方案。相信在未来的科技发展中,二分搜索将继续发挥着重要的作用,为我们的生活和工作带来更多的便利和创新。
51 1
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
存储 Web App开发 算法
2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构之单双链表按位、值查找;[前后]插入;删除指定节点;求表长、静态链表等代码及具体思路详解步骤;举例说明、注意点及常见报错问题所对应的解决方法
|
1月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之顺序表习题精讲【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
顺序表的定义和基本操作之插入;删除;按值查找;按位查找习题精讲等具体详解步骤以及举例说明
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之王道第2.3章节之线性表精题汇总二(5)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
IKU达人之数据结构与算法系列学习×单双链表精题详解、数据结构、C++、排序算法、java 、动态规划 你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!