魔搭牵手vLLM,提供更快更高效LLM推理服务

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 今年六月,来自加州大学伯克利分校、斯坦福大学、加州大学圣迭戈分校的研究人员基于操作系统中经典的虚拟内存和分页技术,提出了一个新的注意力算法PagedAttention,并打造了一个LLM服务系统vLLM。

导言

今年六月,来自加州大学伯克利分校、斯坦福大学、加州大学圣迭戈分校的研究人员基于操作系统中经典的虚拟内存和分页技术,提出了一个新的注意力算法PagedAttention,并打造了一个LLM服务系统vLLM。


论文链接:

https://arxiv.org/pdf/2309.06180.pdf


Github开源链接:

https://github.com/vllm-project/vllm


vLLM在KV缓存上实现了几乎零浪费,并且可以在「请求内部」和「请求之间」灵活共享KV高速缓存,进一步减少了内存的使用量。


近期,魔搭社区和vLLM合作,一起为中国开发者提供更快更高效的LLM推理服务,基于vLLM,开发者可以实现针对魔搭社区的大语言模型,快速对数据集进行离线批量推理,构建API服务器,启动兼容 OpenAI 的 API 服务器等。


魔搭社区最新的镜像已经支持预装vLLM,魔搭官方镜像环境:

registry.cn-hangzhou.aliyuncs.com/modelscope-repo/modelscope:ubuntu22.04-cuda11.8.0-py310-torch2.1.0-tf2.14.0-1.9.5


最新镜像也将尽快上架到魔搭免费算力镜像列表。


魔搭社区支持的模型列表:

模型结构

模型名称

实际的模型id样例

AquilaForCausalLM

Aquila

BAAI/AquilaChat2-34B, BAAI/Aquila2-34B, etc.

BaiChuanForCausalLM

Baichuan

baichuan-inc/Baichuan2-7B-Base, baichuan-inc/Baichuan2-13B-Base, etc.

ChatGLMModel

ChatGLM

ZhipuAI/chatglm2-6b, ZhipuAI/chatglm3-6b, etc.

InternLMForCausalLM

InternLM

internlm/internlm-7b, internlm/internlm-chat-7b, etc.

QWenLMHeadModel

Qwen

qwen/Qwen-7B, qwen/Qwen-7B-Chat, etc.

LlamaForCausalLM

LLaMa

modelscope/Llama-2-7b-ms,modelscope/Llama-2-13b-ms

modelscope/Llama-2-70b-ms,

etc.

YiForCausalLM

Yi

01ai/Yi-6B, 01ai/Yi-34B, etc.


魔搭社区最佳实践


在vLLM上使用魔搭的模型只需要在任何vLLM命令之前设置一个环境变量:

export VLLM_USE_MODELSCOPE=True

之后在需要填入模型id的地方使用魔搭的模型id即可。下面我们给出几个代码范例,来展示在vLLM上如何快速地加载魔搭模型进行推理。


离线批量推理

我们首先展示一个使用 vLLM 对数据集进行离线批量推理的示例。

使用来自魔搭ModelScope社区的LLM基础模型


qwen/Qwen-7B

https://www.modelscope.cn/models/qwen/Qwen-7B/summary

from vllm import LLM, SamplingParams
import os
# 设置环境变量,从魔搭下载模型
os.environ['VLLM_USE_MODELSCOPE'] = 'True'
llm = LLM(model="qwen/Qwen-7B", revision="v1.1.8", trust_remote_code=True)
prompts = [
    "Hello, my name is",
    "today is a sunny day,",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95,stop=["<|endoftext|>"])
outputs = llm.generate(prompts, sampling_params,)
# print the output
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")


使用来自魔搭ModelScope社区的LLM对话模型(支持单轮和多轮)


ChatGLM3-6b-32k

https://www.modelscope.cn/models/ZhipuAI/chatglm3-6b-32k/summary

from vllm import LLM, SamplingParams
import os
from modelscope import AutoTokenizer
from copy import deepcopy
# 设置环境变量,从魔搭下载模型
os.environ['VLLM_USE_MODELSCOPE'] = 'True'
def process_response(output, history):
    # Code borrowed from ChatGLM3-6b-32k
    content = ""
    history = deepcopy(history)
    for response in output.split("<|assistant|>"):
        metadata, content = response.split("\n", maxsplit=1)
        if not metadata.strip():
            content = content.strip()
            history.append({"role": "assistant", "metadata": metadata, "content": content})
            content = content.replace("[[训练时间]]", "2023年")
        else:
            history.append({"role": "assistant", "metadata": metadata, "content": content})
            if history[0]["role"] == "system" and "tools" in history[0]:
                content = "\n".join(content.split("\n")[1:-1])
                def tool_call(**kwargs):
                    return kwargs
                parameters = eval(content)
                content = {"name": metadata.strip(), "parameters": parameters}
            else:
                content = {"name": metadata.strip(), "content": content}
    return content, history
llm = LLM(model="ZhipuAI/chatglm3-6b-32k", revision="v1.0.1", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("ZhipuAI/chatglm3-6b-32k", trust_remote_code=True)
prompts = [
    "Hello, my name is Alia",
    "Today is a sunny day,",
    "The capital of France is",
    "Introduce YaoMing to me.",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=128,
                        stop=[tokenizer.eos_token, "<|user|>", "<|observation|>"])
inputs = []
for prompt in prompts:
    # build chat input according to the prompt and history
    inputs.append(tokenizer.build_chat_input(prompt, [])['input_ids'].numpy()[0].tolist())
# call with prompt_token_ids, which has template information
outputs = llm.generate(prompt_token_ids=inputs, sampling_params=sampling_params,)
histories = []
for prompt, output in zip(prompts, outputs):
    history = []
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
    history.append({"role": 'user', "content": prompt})
    generated_text, history = process_response(generated_text, history)
    histories.append(history)
prompts_new = [
    'What is my name again?',
    'What is the weather I just said today?',
    'What is the city you mentioned just now?',
    'How tall is him?'
]
inputs = []
for prompt, history in zip(prompts_new, histories):
    inputs.append(tokenizer.build_chat_input(prompt, history)['input_ids'].numpy()[0].tolist())
outputs = llm.generate(prompt_token_ids=inputs, sampling_params=sampling_params,)
# print the output
for prompt, output in zip(prompts_new, outputs):
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")


4条prompt推理时间低于1秒:


多轮对话的效果也很流畅:


API服务器

vLLM 可以部署为 LLM 服务。服务器使用AsyncLLMEngine类来支持传入请求的异步处理。


启动服务器:

VLLM_USE_MODELSCOPE=True python -m vllm.entrypoints.openai.api_server \
--model="qwen/Qwen-7B-Chat" --revision="v1.1.8" --trust-remote-code


在shell中查询模型:

curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen/Qwen-7B-Chat",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
# Response:
# {"id":"cmpl-2a54b777c8714388806a53e7c00daf1d","object":"text_completion","created":1127948,"model":"qwen/Qwen-7B-Chat","choices":[{"index":0,"text":" city in California, United States.","logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":4,"total_tokens":11,"completion_tokens":7}}


有关使用vLLM+ModelScope的更多方法,请查看vLLM的官方快速入门指南:

https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html


点击直达链接

https://docs.vllm.ai/en/latest/getting_started/quickstart.html

相关文章
|
27天前
|
机器学习/深度学习 自然语言处理 测试技术
CoT神话破灭,并非LLM标配!三大学府机构联手证实,CoT仅在数学符号推理有用
【10月更文挑战第17天】链式思维(CoT)曾被认为是大型语言模型(LLM)激发推理能力的关键方法,但最新研究显示,CoT仅在数学和符号推理任务中有效,其他任务中效果不明显。加州大学伯克利分校、斯坦福大学和卡内基梅隆大学的联合研究打破了CoT作为LLM标配的神话,为重新评估LLM的推理能力提供了新视角。
32 1
|
5月前
|
机器学习/深度学习 缓存
Block Transformer:通过全局到局部的语言建模加速LLM推理
Block Transformer是一种优化自回归语言模型推理效率的新架构,通过块级自注意力来平衡全局和局部依赖,提高吞吐量。模型包含嵌入器、块解码器和令牌解码器,其中块解码器处理全局依赖,令牌解码器处理局部细节。这种方法减轻了KV缓存的延迟和内存开销,尤其是在长序列处理中。实验显示,尽管Block Transformer参数量增加,但推理速度显著提升,尤其是在大块长度和优化的组件比例下,实现了性能与速度的平衡。
312 7
|
13天前
|
人工智能 自然语言处理
重要的事情说两遍!Prompt复读机,显著提高LLM推理能力
【10月更文挑战第30天】本文介绍了一种名为“问题重读”(Question Re-reading)的提示策略,旨在提高大型语言模型(LLMs)的推理能力。该策略受人类学习和问题解决过程的启发,通过重新审视输入提示中的问题信息,使LLMs能够提取更深层次的见解、识别复杂模式,并建立更细致的联系。实验结果显示,问题重读策略在多个推理任务上显著提升了模型性能。
30 2
|
23天前
|
JSON 人工智能 算法
探索LLM推理全阶段的JSON格式输出限制方法
文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
|
29天前
|
机器学习/深度学习 自然语言处理 测试技术
CoT神话破灭,并非LLM标配!三大学府机构联手证实,CoT仅在数学符号推理有用
【10月更文挑战第16天】近期,加州大学伯克利分校、斯坦福大学和卡内基梅隆大学联合研究发现,链式思维(CoT)方法在数学和符号推理任务中表现优异,但在其他类型任务中效果不明显。这一研究打破了CoT作为大型语言模型(LLM)标配的神话,为重新审视LLM的推理能力提供了新视角。
27 2
|
2月前
|
人工智能 Prometheus 监控
使用 NVIDIA NIM 在阿里云容器服务(ACK)中加速 LLM 推理
本文介绍了在阿里云容器服务 ACK 上部署 NVIDIA NIM,结合云原生 AI 套件和 KServe 快速构建高性能模型推理服务的方法。通过阿里云 Prometheus 和 Grafana 实现实时监控,并基于排队请求数配置弹性扩缩容策略,提升服务稳定性和效率。文章提供了详细的部署步骤和示例,帮助读者快速搭建和优化模型推理服务。
169 7
使用 NVIDIA NIM 在阿里云容器服务(ACK)中加速 LLM 推理
|
2月前
|
人工智能 Prometheus 监控
使用NVIDIA NIM在阿里云ACK中加速LLM推理
介绍在阿里云ACK集群上结合AI套件能力快速部署NVIDIA NIM模型推理服务,同时提供全面的监控指标和实现弹性伸缩。
使用NVIDIA NIM在阿里云ACK中加速LLM推理
|
2月前
|
编解码 定位技术 计算机视觉
多模态LLM视觉推理能力堪忧,浙大领衔用GPT-4合成数据构建多模态基准
【9月更文挑战第2天】浙江大学领衔的研究团队针对多模态大型模型(MLLM)在抽象图像理解和视觉推理上的不足,提出了一种利用GPT-4合成数据构建多模态基准的方法。该研究通过合成数据提高了MLLM处理图表、文档等复杂图像的能力,并构建了一个包含11,193条指令的基准,涵盖8种视觉场景。实验表明,这种方法能显著提升模型性能,但依赖闭源模型和高计算成本是其局限。论文详细内容见:https://arxiv.org/pdf/2407.07053
79 10
|
3月前
|
安全 异构计算
为大型语言模型 (LLM) 提供服务需要多少 GPU 内存?
为大型语言模型 (LLM) 提供服务需要多少 GPU 内存?
144 0
为大型语言模型 (LLM) 提供服务需要多少 GPU 内存?
|
4月前
|
并行计算 PyTorch 算法框架/工具
LLM推理引擎怎么选?TensorRT vs vLLM vs LMDeploy vs MLC-LLM
有很多个框架和包可以优化LLM推理和服务,所以在本文中我将整理一些常用的推理引擎并进行比较。
394 2

热门文章

最新文章