【网安AIGC专题10.11】①代码大模型的应用:检测、修复②其安全性研究:模型窃取攻击(API和网页接口) 数据窃取攻击 对抗攻击(用途:漏洞隐藏) 后门攻击(加触发器+标签翻转)(下)

简介: 【网安AIGC专题10.11】①代码大模型的应用:检测、修复②其安全性研究:模型窃取攻击(API和网页接口) 数据窃取攻击 对抗攻击(用途:漏洞隐藏) 后门攻击(加触发器+标签翻转)

提示工程——漏洞修复

增强提示2

模板:下面的代码是为一个训练在[Y]上的[X]问题设计的。 Template: The following code is designed for a [X] problem trained on [Y].

请修理它以便[Z]。(代码)

Please repair it in order to [Z].[Code]

示例:下面的代码是为在Iris数据集上训练的分类问题而设计的。 Example: The following code is designed for a classification problem trained on Iris dataset.

为了提高精度,请修理一下代码。 Please repair it in order to improve the accuracy.[Code]

对话:修错了。 Dialogue: The repair is wrong.

故障可能发生在以下位置:[Loc]。 Faults may happen in the following locations:[Loc].

请修理一下。 Please repair it.

提示工程——代码摘要(效果不行、给出的原因:单词不一样,但表述更好)

这个工作,效果肉眼可见的差hh

学长自己做的“微调——漏洞检测”评估实验(和参数量呈正比关系)

学长是用A800完成的实验

补充:A100比A800更好,但都是80G的

闭源api接口,微调差不多60刀一次

代码大模型的安全问题

模型窃取攻击(API和网页接口)

模型窃取指的是攻击者依靠有限次数的模型询问,从而得到一个和目标模型 的功能和效果一致的本地。这类攻击的性价比非常高. 因为 攻击者不需要训练目标模型所需的金钱、时间、脑力劳动的开销,却能够得到一个原本花费了大量的时间、金钱、人力、算力才能得到的模型。由于 ChatGPT 和GPT4 的模型参数很大并且功能十分广泛,要完整窃取其整个模型是具有极大困难的。

但是攻击者可以只窃取其某一部分的能力,例如窃取的模型在关于金融领域的知识上能够与 ChatGPT/GPT4 的能力相一致,就可以免费使用 ChatGPT 和GPT4 的能力。特别是在现在 ChatGPT 呈现专业化应用的情况下,具有某一领域中强大能力的模型是受人追捧的。并且 ChatGPT 已经开放了 API 的使用,这更为模型窃取提供了询问入口。

数据窃取攻击

数据窃取攻击指的是通过目标模型的多次输出去获取训练过程中使用过的数据的分布。如果攻击者能够知晓 GPT 模型训练过程中使用过的数据是哪些,就有可能会造成数据隐私损害。

在此之前研究者就发现人工智能模型使用过程中产生的相关计算数据,包括输出向量、模型参数、模型梯度等,可能会泄露训练数据的敏感信息。这使深度学习模型的数据泄露问题难以避免。

例如,

1、模型逆向攻击,攻击者可以在不接触隐私数据的情况下利用模型输出结果等信息来反向推导出用户的隐私数据;

2、成员推断攻击,攻击者可以根据模型的输出判断一个具体的数据是否存在于训练集中。

ChatGPT 和 GPT4 虽然没有输出向量等特征因素,但是由于其模型结构,训练方式的一部分已经被人所知,并且开放了 API 接口来访问,因此针对 ChatGPT 和 GPT4 的数据逆向攻击已经具有相当威胁。

Bard承认自己是GPT3

对抗攻击(用途:漏洞隐藏)

大模型鲁棒性差

标识符(label)随机替换对预训练模型容易产生误导,因而影响较大

后门攻击(加触发器+标签翻转)

代码搜索、死代码插入、修改标识符

代码风格转换

参考文献

生成式大模型安全与隐私白皮书,之江实验室

GPT-4 Technical Report,OpenAI

目录
相关文章
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
5月前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
162 2
|
5月前
|
机器学习/深度学习 人工智能 算法
AI赋能大学计划·大模型技术与应用实战学生训练营——吉林大学站圆满结营
10月30日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·吉林大学站圆满结营。
|
5月前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
321 2
|
5月前
|
存储 弹性计算 自然语言处理
基础大模型 vs 应用大模型
基础大模型(如GPT-3、BERT等)通过大量通用数据训练,具备强大的泛化能力。应用大模型则在此基础上进行微调,针对特定任务优化。两者均将知识编码在参数中,而非直接存储原始数据,实现“自然留存”。阿里云提供多种大模型和服务,欢迎体验。
107 0
|
5月前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
1001 2
|
5月前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
423 1
|
6月前
|
机器学习/深度学习 人工智能 自动驾驶
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
本文介绍了AI和大模型在机器人、自动驾驶和智能座舱领域的最新应用和技术进展。涵盖多模态大语言模型在机器人控制中的应用、移动机器人(AMRs)的规模化部署、协作机器人的智能与安全性提升、AR/VR技术在机器人培训中的应用、数字孪生技术的优化作用、Rust语言在机器人编程中的崛起,以及大模型在自动驾驶中的核心地位、端到端自动驾驶解决方案、全球自动驾驶的前沿进展、智能座舱的核心技术演变和未来发展趋势。
556 2
|
6月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
180 2
|
6月前
|
弹性计算 自然语言处理 安全
国内基础大模型的独立性及应用大模型的依赖性
本文探讨了国内基础大模型(如阿里巴巴的通义千问)的独立性及其应用大模型的依赖性。详细分析了这些模型的研发过程、应用场景及技术挑战,包括数据收集、模型架构设计和算力支持等方面。同时,讨论了微调模型、插件式设计和独立部署等不同实现方式对应用大模型的影响。
130 0

热门文章

最新文章