【机器学习-黑马程序员】人工智能、机器学习概述

简介: 机器学习和人工智能、深度学习的关系机器学习是人工智能的一个实现途径深度学习是机器学习的一个方法发展而来的机器学习的应用场景非常多,主要有下图三种领域:

、人工智能概述

3f1bc75ad0e6dbc02b2c14f897bdfe35_cec4b136a9f84aa780c8a557dfcc65da.png


机器学习和人工智能、深度学习的关系

机器学习是人工智能的一个实现途径

深度学习是机器学习的一个方法发展而来的

机器学习的应用场景非常多,主要有下图三种领域:

0472cf2d6ddf1fb50e8e4611fdbef6db_94b00b7fe0d348798524f9233eb528e5.png

二、什么是机器学习

定义

机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。

76bb1c217a54f25d0946836f29e8810a_99310b414f444342888b8b66dbab312d.png

数据集构成

结构:特征值+目标值

9118c5d8b189713fac2709e225f80ec6_ff38c7dde1ab4082ba0dfd4cbb33050f.png

注:


对于每一行数据我们可以称之为样本

有些数据集可以没有目标值

二、机器学习算法分类

监督学习(supervised learning)(预测):输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)(有目标值)。

分类问题:目标值为类别

分类 k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归

回归问题:目标值为连续型数据

线性回归、岭回归

无监督学习(unsupervised learning):输入数据是由输入特征值所组成(没有目标值)

聚类 k-means


8988349bcd411d60bcd27bccfcc6f783_33b96db04f8e40eb87053c7db57b2a4e.png

三、机器学习开发流程

获取数据->数据处理->特征工程->机器学习算法训练(获得模型)->模型评估->应用


9465bc5107dec2ea2a8ce1aa00b1c1e6_ddd0b41be739408d8cdb31398b5d73b3.png

注:


学习要点:算法是核心,数据与计算是基础。


目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
6天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
19 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####
|
9天前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
26 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能的未来:从机器学习到深度学习的演进
【10月更文挑战第8天】人工智能的未来:从机器学习到深度学习的演进
60 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
25天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
55 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练

热门文章

最新文章