【Python】数据分析:numpy

简介: 【Python】数据分析:numpy

什么是numpy?

一个在Python中做科学计算的基础库,重在数值计算也是大部分PYTHON科学计算库的基础库,多用于在大型多维数组上执行数值运算

基础用法

  • np.array(list):创建numpy的数组
  • np.array(range(start,end,step):在array里面创建数组
  • np.arange(start,end,step):相当于np.array(range(start,end,step)
  • ndarray.dtype:数组内存放数据的类型
  • np.array(range(start,end,step),dtype=type):指定数据类型,数据类型的代码如下图所示
  • ndarray.astype:调整数据类型
  • np.round(ndaaray,n):取n位小数

    数据类型的代码.png

import numpy as np
import random
arr01 = np.array([1,2,3])
print(arr01)
print(type(arr01))
arr02 = np.array(range(2,9))
print(arr02)
print(type(arr02))
arr03 = np.arange(2,10,2)
print(arr03)
print(type(arr03))
print(arr03.dtype)
arr04 = np.array(range(1,10),dtype='i1')
print(arr04,arr04.dtype)
# arr05=np.array([0,0,1,1,0,1],dtype='bool')
arr05=np.array([0,0,1,1,0,1],dtype=np.bool_)
print(arr05,type(arr05))
arr06=arr05.astype('i1')
print(arr06,type(arr06))
t1 = np.array([random.random() for i in range(10)])
print(np.round(t1,2))

运行结果.png

02 - 基础语法2

  • array.shape:数组的形状
  • array.reshape(n,m,v,...):改变数组的形状
  • array.flatten():展开数组

import numpy as np
t1 = np.arange(12)
print(t1,t1.shape)
t2 = t1.reshape(3,4)
print(t2)
t3 = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])
print(t3)
print(t3.shape)


目录
相关文章
|
21天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
49 3
|
24天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
72 4
数据分析的 10 个最佳 Python 库
|
28天前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
25天前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
29天前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
1月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
29天前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
|
1月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
下一篇
DataWorks