05 机器学习 - 朴素贝叶斯分类算法原理

简介: 05 机器学习 - 朴素贝叶斯分类算法原理

1.概述

  • 贝叶斯分类算法是一大类分类算法的总称
  • 贝叶斯分类算法以样本可能属于某类的概率来作为分类依据
  • 朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种

注:朴素的意思是条件概率独立性,此处要想真正理解,需要有概率论的基础知识

P(A|x1x2x3x4)=p(A|x1)*p(A|x2)p(A|x3)p(A|x4)则为条件概率独立
P(xy|z)=p(xyz)/p(z)=p(xz)/p(z)*p(yz)/p(z)

2.算法思想

朴素贝叶斯的思想是这样的:

如果一个事物在一些属性条件发生的情况下,事物属于A的概率 > 属于B的概率,则判定事物属于A

通俗来说比如,你在街上看到一个黑人,我让你猜这哥们哪里来的,你十有八九猜非洲。为什么呢? 在你的脑海中,有这么一个判断流程:

1.这个人的肤色是黑色 <特征>

2.黑色人种是非洲人的概率最高 <条件概率:黑色条件下是非洲人的概率>

3.没有其他辅助信息的情况下,最好的判断就是非洲人

这就是朴素贝叶斯的思想基础。

再扩展一下,假如在街上看到一个黑人讲英语,那我们是怎么去判断他来自于哪里?下面提取特征:

肤色: 黑

语言: 英语

  • 黑色人种来自非洲的概率:80%
  • 黑色人种来自于美国的概率:20%
  • 讲英语的人来自于非洲的概率:10%
  • 讲英语的人来自于美国的概率:90%

在我们的自然思维方式中,就会这样判断:

  • 这个人来自非洲的概率:80% * 10% = 0.08
  • 这个人来自美国的概率:20% * 90% =0.18

我们的判断结果就是:此人来自美国!

其蕴含的数学原理如下:

p(A|xy)=p(Axy)/p(xy)=p(Axy)/p(x)p(y)=p(A)/p(x)*p(A)/p(y)* p(xy)/p(xy)=p(A|x)p(A|y)
• 1

3. 算法要点

3.1 算法步骤

  1. 分解各类先验样本数据中的特征
  2. 计算各类数据中,各特征的条件概率(比如:特征1出现的情况下,属于A类的概率p(A|特征1),属于B类的概率p(B|特征1),属于C类的概率p(C|特征1)…)
  3. 分解待分类数据中的特征(特征1、特征2、特征3、特征4…)
  4. 计算各特征的各条件概率的乘积,如下所示:
    判断为A类的概率:p(A|特征1)*p(A|特征2)*p(A|特征3)*p(A|特征4)
    判断为B类的概率:p(B|特征1)*p(B|特征2)*p(B|特征3)*p(B|特征4)
    判断为C类的概率:p(C|特征1)*p(C|特征2)*p(C|特征3)*p(C|特征4)
  5. 结果中的最大值就是该样本所属的类别

3.2 算法应用举例

大众点评、淘宝等电商上都会有大量的用户评论,比如:

序号 评论 标志
1 衣服质量太差了!!!!颜色根本不纯!!! 0
2 我有一有种上当受骗的感觉!!!! 0
3 质量太差,衣服拿到手感觉像旧货!!! 0
4 上身漂亮,合身,很帅,给卖家点赞 1
5 穿上衣服帅呆了,给点一万个赞 1
6 我在他家买了三件衣服!!!!质量都很差! 0

其中1/2/3/6是差评,4/5是好评

现在需要使用朴素贝叶斯分类算法来自动分类其他的评论,比如:

a. 这么差的衣服以后再也不买了

b. 帅,有逼格

……

3.3 算法应用流程

1.分解出先验数据中的各特征(即分词,比如“衣服”“质量太差”“差”“不纯”“帅”“漂亮”,“赞”……)

2.计算各类别(好评、差评)中,各特征的条件概率(比如 p(“衣服”|差评)、p(“衣服”|好评)、p(“差”|好评) 、p(“差”|差评)……)

3.分解出待分类样本的各特征(比如分解a: “差” “衣服” ……)

4.计算类别概率

P(好评) = p(好评|“差”) *p(好评|“衣服”)*……
P(差评) = p(差评|“差”) *p(差评|“衣服”)*……

5.显然P(差评)的结果值更大,因此a被判别为“差评”

目录
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
116 4
|
8天前
|
算法 Java 数据库
理解CAS算法原理
CAS(Compare and Swap,比较并交换)是一种无锁算法,用于实现多线程环境下的原子操作。它通过比较内存中的值与预期值是否相同来决定是否进行更新。JDK 5引入了基于CAS的乐观锁机制,替代了传统的synchronized独占锁,提升了并发性能。然而,CAS存在ABA问题、循环时间长开销大和只能保证单个共享变量原子性等缺点。为解决这些问题,可以使用版本号机制、合并多个变量或引入pause指令优化CPU执行效率。CAS广泛应用于JDK的原子类中,如AtomicInteger.incrementAndGet(),利用底层Unsafe库实现高效的无锁自增操作。
理解CAS算法原理
|
29天前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
64 4
|
29天前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
48 3
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
51 1
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
138 80
|
2天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。