05 机器学习 - 朴素贝叶斯分类算法原理

简介: 05 机器学习 - 朴素贝叶斯分类算法原理

1.概述

  • 贝叶斯分类算法是一大类分类算法的总称
  • 贝叶斯分类算法以样本可能属于某类的概率来作为分类依据
  • 朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种

注:朴素的意思是条件概率独立性,此处要想真正理解,需要有概率论的基础知识

P(A|x1x2x3x4)=p(A|x1)*p(A|x2)p(A|x3)p(A|x4)则为条件概率独立
P(xy|z)=p(xyz)/p(z)=p(xz)/p(z)*p(yz)/p(z)

2.算法思想

朴素贝叶斯的思想是这样的:

如果一个事物在一些属性条件发生的情况下,事物属于A的概率 > 属于B的概率,则判定事物属于A

通俗来说比如,你在街上看到一个黑人,我让你猜这哥们哪里来的,你十有八九猜非洲。为什么呢? 在你的脑海中,有这么一个判断流程:

1.这个人的肤色是黑色 <特征>

2.黑色人种是非洲人的概率最高 <条件概率:黑色条件下是非洲人的概率>

3.没有其他辅助信息的情况下,最好的判断就是非洲人

这就是朴素贝叶斯的思想基础。

再扩展一下,假如在街上看到一个黑人讲英语,那我们是怎么去判断他来自于哪里?下面提取特征:

肤色: 黑

语言: 英语

  • 黑色人种来自非洲的概率:80%
  • 黑色人种来自于美国的概率:20%
  • 讲英语的人来自于非洲的概率:10%
  • 讲英语的人来自于美国的概率:90%

在我们的自然思维方式中,就会这样判断:

  • 这个人来自非洲的概率:80% * 10% = 0.08
  • 这个人来自美国的概率:20% * 90% =0.18

我们的判断结果就是:此人来自美国!

其蕴含的数学原理如下:

p(A|xy)=p(Axy)/p(xy)=p(Axy)/p(x)p(y)=p(A)/p(x)*p(A)/p(y)* p(xy)/p(xy)=p(A|x)p(A|y)
• 1

3. 算法要点

3.1 算法步骤

  1. 分解各类先验样本数据中的特征
  2. 计算各类数据中,各特征的条件概率(比如:特征1出现的情况下,属于A类的概率p(A|特征1),属于B类的概率p(B|特征1),属于C类的概率p(C|特征1)…)
  3. 分解待分类数据中的特征(特征1、特征2、特征3、特征4…)
  4. 计算各特征的各条件概率的乘积,如下所示:
    判断为A类的概率:p(A|特征1)*p(A|特征2)*p(A|特征3)*p(A|特征4)
    判断为B类的概率:p(B|特征1)*p(B|特征2)*p(B|特征3)*p(B|特征4)
    判断为C类的概率:p(C|特征1)*p(C|特征2)*p(C|特征3)*p(C|特征4)
  5. 结果中的最大值就是该样本所属的类别

3.2 算法应用举例

大众点评、淘宝等电商上都会有大量的用户评论,比如:

序号 评论 标志
1 衣服质量太差了!!!!颜色根本不纯!!! 0
2 我有一有种上当受骗的感觉!!!! 0
3 质量太差,衣服拿到手感觉像旧货!!! 0
4 上身漂亮,合身,很帅,给卖家点赞 1
5 穿上衣服帅呆了,给点一万个赞 1
6 我在他家买了三件衣服!!!!质量都很差! 0

其中1/2/3/6是差评,4/5是好评

现在需要使用朴素贝叶斯分类算法来自动分类其他的评论,比如:

a. 这么差的衣服以后再也不买了

b. 帅,有逼格

……

3.3 算法应用流程

1.分解出先验数据中的各特征(即分词,比如“衣服”“质量太差”“差”“不纯”“帅”“漂亮”,“赞”……)

2.计算各类别(好评、差评)中,各特征的条件概率(比如 p(“衣服”|差评)、p(“衣服”|好评)、p(“差”|好评) 、p(“差”|差评)……)

3.分解出待分类样本的各特征(比如分解a: “差” “衣服” ……)

4.计算类别概率

P(好评) = p(好评|“差”) *p(好评|“衣服”)*……
P(差评) = p(差评|“差”) *p(差评|“衣服”)*……

5.显然P(差评)的结果值更大,因此a被判别为“差评”

目录
相关文章
|
1月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
8月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
314 7
|
6月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
7月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
292 6
|
9月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
9月前
|
机器学习/深度学习 数据采集 分布式计算
大数据分析中的机器学习基础:从原理到实践
大数据分析中的机器学习基础:从原理到实践
427 3
|
9月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
204 0
|
12月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1145 6
|
10月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
1783 13
机器学习算法的优化与改进:提升模型性能的策略与方法

热门文章

最新文章