2023云栖大会 |云原生数据库,走向Serverless与AI驱动的一站式数据平台

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
简介: 10月31日,在2023云栖大会上,阿里云副总裁,阿里云数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《云原生数据库,走向Serverless与AI驱动的一站式数据平台》主题演讲。他表示,AI驱动下的数据平台,正在向一站式、智能化的方向演进。作为AIGC应用的基础设施,以PolarDB、AnalyticDB、Lindorm、RDS为核心的阿里云瑶池数据库现已全面拥抱向量检索能力,并与通义等大模型深度集成,为用户提供智能化的一站式数据管理平台,加速业务数智创新。

10月31日,在2023云栖大会上,阿里云副总裁,阿里云数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《云原生数据库,走向Serverless与AI驱动的一站式数据平台》主题演讲。他表示,AI驱动下的数据平台,正在向一站式、智能化的方向演进。作为AIGC应用的基础设施,以PolarDB、AnalyticDB、Lindorm、RDS为核心的阿里云瑶池数据库现已全面拥抱向量检索能力,并与通义等大模型深度集成,为用户提供智能化的一站式数据管理平台,加速业务数智创新。

随着云原生+Serverless的不断深入,一站式数据平台将让数据管理开发像“搭积木”一样简单实用,以性价比更高、体验更优的云数据库服务,助推用户业务提效增速。

01

云原生+Serverless,让数据平台像搭积木一样简单好用


在信息管理模型(DIKW)中,人类的认知分为四个层次:数据、信息、知识和智慧,而数据平台所承载的就是其中最核心的部分——数据,并内置算力与模型。如今,数据平台已成为AI时代的算力底座,它能够理解数据内容、理清用户意图、整合数据资源,同时在加速迈向“云原生化、平台化、一体化和智能化”,让算力服务触手可及。

李飞飞介绍道,阿里云瑶池数据库不断深化「云原生+Serverless」应用,旨在让数据平台像“搭积木”一样便捷轻巧,提供秒级弹性、开箱即用免运维等服务。用户可以更专注于核心业务,只需按效果和价值付费。据悉,阿里云瑶池旗下的核心产品均已推出Serverless形态,包括云原生数据库PolarDB、云原生数据仓库AnalyticDB、云原生多模数据库Lindorm、云数据库RDS等,并实现了“弹得更快、更稳、更广、更细”的全面升级:

 弹得更快秒级探测、秒级切换

弹得更稳:全场景覆盖,智能无感秒级弹性

弹得更广:秒级弹升0~3000核

弹得更细:三层解耦独立弹升。对比传统架构,Serverless形态可降低60%成本

此外,通过计算资源的一体化调度与管理、混部资源利用率提升、异构架构一体化适配(X86和ARM)、安全容器增强等技术创新,瑶池数据库竞争力全面升级;其中,核心产品(PolarDB、AnalyticDB、RDS)发布基于倚天ARM的经济版,诠释极致性价比。对比开源自建数据库,经济版价格比自建低30%,同时性能比自建高10%。

02

以PolarDB为核心,一体化加速云上数智创新

为打破数据孤岛,瑶池数据库聚焦客户业务场景,通过多产品一体化体验,为用户提供了全方位的一体化能力,进一步简化开发、管理和运维成本。具体包括HTAP一体化、DB+Cache一体化、DB+存储一体化等三大能力全新升级,实现OLTP、OLAP、NoSQL等多业务场景融合,产品易用性全面升级,切实提升用户使用体验:

1. HTAP:

a) 轻量级HTAP:基于自研IMCI技术,云原生数据库PolarDB 100%兼容MySQL语法,可支持大数据量、毫秒级延迟的数据分析需求。对比传统MySQL行存,性能提升了100倍以上。

b) 云原生一体化HTAP:采用Zero-ETL技术,“PolarDB+AnalyticDB”、“RDS+ClickHouse”之间可实现亚秒级数据同步,提供统一入口的一站式HTAP体验,为用户节省10倍链路同步成本,建仓速度提升高达7倍。

以“PolarDB MySQL版+AnalyticDB for MySQL版”为例,针对多源汇聚分析场景,云原生一体化HTAP提供PolarDB←→AnalyticDB的数据无缝流转能力,无需维护额外数据管道,可降低90%的数据链路成本并减少运维负担。通过高速并行通道,可加速数据初始化性能,大幅降低建仓所需时间,目前该能力已在多家互联网行业客户中落地。

2. “DB+Cache”一体化:实现“PolarDB+Tair”、“RDS+Redis”之间的数据自动同步与融合,在解决缓存数据一致性难题的同时,实现了内存资源统一调度与管理,帮助用户降本增效(最高节省30%成本)、提升体验。

3. “DB+存储”一体化:基于数据库缓存池拓展(Buffer Pool Extension)、Auto PL、冷热分离等技术,将冷热温业务数据分层存储,提升性能,可降低高达90%存储成本。

阿里云瑶池持续推动以PolarDB为代表的云数据库向云原生纵深发展,在本次大会上,李飞飞发布了PolarDB Always On系列3大技术升级:

 Multi-Master三层解耦架构:结合RDMA/CXL支持的三层解耦技术,内存池化,提升CPU内存使用率,内存使用率提升50%。Multi-Master轮动升级:集群轮动升级,升级集群不停机,进一步提升SLA,不可用时间减少50%。

高压缩比数据存储:采用in-Memory行级压缩、Smart SSD 2.0硬件压缩等为代表的软硬件一体化压缩技术,最高可节省80%存储成本。

03

AI驱动,数据平台走向一站式智能化

作为AIGC应用的基础设施,阿里云瑶池数据库在AI领域也在不断进行技术布局与应用探索。通过扩展面向Al的数据管理与服务能力,打造智能化的一站式数据管理平台,让云原生数据库更易用,助力用户抢占商业先机。

会上,瑶池数据库首次推出数据智能助手DMS Data Copilot,其结合了DMS智能数据管理、数据使用能力,让SQL开发、使用和管理更加规范和高效,是用户“看数、管数、用数”不可或缺的智能管家。据介绍,DMS Data Copilot支持30+种数据库类型,可提供NL2SQL(降低SQL编写门槛、提升开发效率)、SQL注释生成、SQL纠错、SQL优化等功能。在耶鲁大学推出的Spider数据集评测中,DMS Copilot的成功率和准确率达到99.5%和78%,比开源模型的正确率高出4%。AIGC和LLM大模型浪潮的崛起,进一步推动了业务和应用对向量数据库的需求。瑶池数据库现已全面拥抱向量检索能力,在PolarDB、RDS、AnalyticDB、Lindorm、Tair等产品中集成向量功能,实现结构化数据、半结构化数据、多模数据、向量数据的一体化处理。


其中,企业级智能数仓AnalyticDB与通义大模型家族深度集成,推出一站式全托管大模型解决方案。通义行业大模型和百炼大模型服务平台采用AnalyticDB作为内置向量检索引擎,为政务、医药、电力、制造、汽车、金融等千行百业提供专属行业解决方案,性能较开源增强了2~5倍,加速AIGC应用落地。云原生多模数据库Lindorm具备多模数据处理能力,是集在线服务、离线分析、向量、Al分析能力于一身的一站式AI数据平台。数据不出库,即可轻松存储和分析海量的半结构化和非结构化数据。

04

云智融合生态共赢,服务千行百业

云数据库生态的良好发展,离不开合作伙伴的支持与协同和多元开放的生态体系。会上,阿里云宣布与SelectDB、MongoDBClickhouse分别达成战略合作,双方将发挥各自的技术优势和平台能力,在产品生态融合、联合解决方案等多个领域展开深度合作,推进技术合作和生态协同,构建合作共赢的生态体系。作为国内首个MongoDB云服务商战略合作伙伴和唯一可提供最新版本MongoDB服务的中国云厂商,阿里云的云数据库MongoDB版3年营收实现8倍增长。未来,MongoDB与阿里云的战略合作还将持续深入,积极布局汽车、金融、物流、制造等领域的数据库建设,帮助更多企业实现数据创新和业务增长,携手开启创新下一站。阿里云已与开源分析型数据库ClickHouse达成国内独家战略合作。作为ClickHouse在中国独家的云服务提供商,阿里云拥有世界上最大的ClickHouse商用集群之一,可提供具备独有企业能力的云原生ClickHouse企业版。企业版为存算分离架构,秒级弹性,按量计费,比开源自建成本降低30%+。此外,阿里云瑶池与飞轮科技达成战略合作,业界首发企业版全托管产品——云数据库 SelectDB 版。SelectDB是飞轮科技基于Apache Doris内核打造、聚焦于企业大数据实时分析需求的新一代实时数据仓库。SelectDB 100%兼容Apache Doris,支持大规模实时数据上的极速查询分析。阿里云SelectDB现已全面公测,用户可以在阿里云上便捷地使用SelectDB数仓服务,以满足海量数据极速实时、融合统一、简单易用的分析处理需求。

目前,阿里云瑶池数据库已在千行百业的核心业务中落地应用,服务于自然人税收管理系统、全国60%的省级医保信息平台、广东移动、友邦保险、南方基金、上海市新能源汽车数据平台、掌阅科技、莉莉丝游戏、识货APP等金融、政务、电信、互联网等多领域的客户。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
8天前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
25 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
3天前
|
人工智能 分布式计算 DataWorks
大数据& AI 产品月刊【2024年12月】
大数据& AI 产品技术月刊【2024年12月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
15天前
|
存储 人工智能 数据管理
|
10天前
|
人工智能 分布式计算 数据处理
MaxCompute Data + AI:构建 Data + AI 的一体化数智融合
本次分享将分为四个部分讲解:第一部分探讨AI时代数据开发范式的演变,特别是MaxCompute自研大数据平台在客户工作负载和任务类型变化下的影响。第二部分介绍MaxCompute在资源大数据平台上构建的Data + AI核心能力,提供一站式开发体验和流程。第三部分展示MaxCompute Data + AI的一站式开发体验,涵盖多模态数据管理、交互式开发环境及模型训练与部署。第四部分分享成功落地的客户案例及其收益,包括互联网公司和大模型训练客户的实践,展示了MaxFrame带来的显著性能提升和开发效率改进。
|
8天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
20天前
|
数据采集 人工智能 分布式计算
探索 MaxCompute MaxFrame:AI 数据预处理的高效之选
探索 MaxCompute MaxFrame:AI 数据预处理的高效之选
|
1月前
|
人工智能 分布式计算 DataWorks
大数据& AI 产品月刊【2024年11月】
大数据& AI 产品技术月刊【2024年11月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
1月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
18天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
45 3
|
18天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
47 3

相关产品

  • 云原生数据库 PolarDB