C++前缀和算法的应用:DI序列的有效排列的原理、源码及测试用例

简介: C++前缀和算法的应用:DI序列的有效排列的原理、源码及测试用例

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频

题目

给定一个长度为 n 的字符串 s ,其中 s[i] 是:

“D” 意味着减少,或者

“I” 意味着增加

有效排列 是对有 n + 1 个在 [0, n] 范围内的整数的一个排列 perm ,使得对所有的 i:

如果 s[i] == ‘D’,那么 perm[i] > perm[i+1],以及;

如果 s[i] == ‘I’,那么 perm[i] < perm[i+1]。

返回 有效排列 perm的数量 。因为答案可能很大,所以请返回你的答案对 109 + 7 取余。

示例 1:

输入:s = “DID”

输出:5

解释:

(0, 1, 2, 3) 的五个有效排列是:

(1, 0, 3, 2)

(2, 0, 3, 1)

(2, 1, 3, 0)

(3, 0, 2, 1)

(3, 1, 2, 0)

示例 2:

输入: s = “D”

输出: 1

分析

用动态规划解决,时间复杂度O(nnn)。用strRes表示结果串,用n表示它的长度,每个数字的取值范围[0,n)。dp[i][j],表示前i+1个数已经处理,未处理的数中共有j个数大于strRes[i]。状态数共有n*n个,状态转换的时间复杂是O(n)。以上升为例:只需要考虑j个比strRes[i]数,选择最小的数,则jNew=j-1;选择次小的数, jNew=j-2…。下降类似,小于strRes[i]的数,可以计算出来:总数-已经处理的数-未处理的数中大于res[i]=n-(i+1)-j。注意:各位数各不相等,所以已经处理的数(如:res[i])是不会在出现的,所以未处理的数,需要考虑大于和小于,不需要考虑等于。

代码

template
class C1097Int
{
public:
C1097Int(long long llData = 0) :m_iData(llData% MOD)
{
}
C1097Int operator+(const C1097Int& o)const
{
return C1097Int(((long long)m_iData + o.m_iData) % MOD);
}
C1097Int& operator+=(const C1097Int& o)
{
m_iData = ((long long)m_iData + o.m_iData) % MOD;
return this;
}
C1097Int& operator-=(const C1097Int& o)
{
m_iData = (m_iData + MOD - o.m_iData) % MOD;
return this;
}
C1097Int operator-(const C1097Int& o)
{
return C1097Int((m_iData + MOD - o.m_iData) % MOD);
}
C1097Int operator(const C1097Int& o)const
{
return((long long)m_iData * o.m_iData) % MOD;
}
C1097Int& operator=(const C1097Int& o)
{
m_iData = ((long long)m_iData * o.m_iData) % MOD;
return *this;
}
bool operator<(const C1097Int& o)const
{
return m_iData < o.m_iData;
}
C1097Int pow(long long n)const
{
C1097Int iRet = 1, iCur = *this;
while (n)
{
if (n & 1)
{
iRet *= iCur;
}
iCur *= iCur;
n >>= 1;
}
return iRet;
}
C1097Int PowNegative1()const
{
return pow(MOD - 2);
}
int ToInt()const
{
return m_iData;
}
private:
int m_iData = 0;;
};
template
int operator+(int iData, const C1097Int& int1097)
{
int iRet = int1097.operator+(C1097Int(iData)).ToInt();
return iRet;
}
template
int& operator+=(int& iData, const C1097Int& int1097)
{
iData = int1097.operator+(C1097Int(iData)).ToInt();
return iData;
}
template
int operator*(int iData, const C1097Int& int1097)
{
int iRet = int1097.operator*(C1097Int<>(iData)).ToInt();
return iRet;
}
template
int& operator*=(int& iData, const C1097Int& int1097)
{
iData = int1097.operator*(C1097Int<>(iData)).ToInt();
return iData;
}
class Solution {
public:
  int numPermsDISequence(string s) {
    //n:结果串的长度 每个数字的取值范围[0,n)
    int n = s.length() + 1;
    vector<C1097Int<>> pre(n);//记录有多少个数大于当前数
    for (int i = 0; i < n; i++)
    {
      pre[n - i -1] += 1;
    }
    for (int i = 0; i < s.length(); i++)
    {
      vector<C1097Int<>> dp(n );
      if ('I' == s[i])
      {
        for (int iMore = 1; iMore < n; iMore++)
        {
          for (int j = 0; j < iMore; j++)
          {
            dp[iMore - j - 1] += pre[iMore];
          }
        }
      }
      else
      {
        for (int iMore = 0; iMore < n; iMore++)
        {
          const int less = n - (i + 1) - iMore;
          if (less < 1)
          {
            break;
          }
          for (int j = 0; j < less; j++)
          {
            const int iNewLess = less - j - 1;
            const int iNewMore = n - (i + 1 + 1) - iNewLess;
            dp[iNewMore] += pre[iMore];
          }
        }
      }
      pre.swap(dp);
    }
    auto bi = std::accumulate(pre.begin(), pre.end(), C1097Int<>(0));
    return bi.ToInt();
  }
};

测试用例

int main()
{
int res = Solution().numPermsDISequence(“”);
Assert(1, res);
res = Solution().numPermsDISequence(“I”);
Assert(1, res);
res = Solution().numPermsDISequence(“D”);
Assert(1, res);
res = Solution().numPermsDISequence(“II”);
Assert(1, res);
res = Solution().numPermsDISequence(“ID”);
Assert(2, res);
res = Solution().numPermsDISequence(“DD”);
Assert(1, res);
res = Solution().numPermsDISequence(“DI”);
Assert(2, res);
res = Solution().numPermsDISequence(“DID”);
Assert(5, res);
res = Solution().numPermsDISequence(“IDD”);
Assert(3, res);
res = Solution().numPermsDISequence(“DDI”);
Assert(3, res);
res = Solution().numPermsDISequence(“DII”);
Assert(3, res);
res = Solution().numPermsDISequence(“IDI”);
Assert(5, res);
res = Solution().numPermsDISequence(“IID”);
Assert(3, res);
//CConsole::Out(res);
}

优化

可以利用前缀和,将时间复杂度降到O(n*n)。

iMore取[1,…]中任意数,选择最大的数,则jNew都等于0
iMore取[2,…]中任意数,选择次大的数,则jNew都等于1
iMore取[3,…] 中任意数,选择第三大的数,则jNew都等于2
结论:
dp[0] = sum(pre[1]…pre[n-1])
dp[1] = sum(pre[2]…pre[n-1])
dp[2] = sum(pre[3]…pre[n-1])

代码

class Solution {
public:
  int numPermsDISequence(string s) {
    //n:结果串的长度 每个数字的取值范围[0,n)
    int n = s.length() + 1;
    vector<C1097Int<>> pre(n);//记录有多少个数大于当前数
    for (int i = 0; i < n; i++)
    {
      pre[n - i -1] += 1;
    }
    for (int i = 0; i < s.length(); i++)
    {
      vector<C1097Int<>> dp(n );
      if ('I' == s[i])
      {
        C1097Int<> biSum = 0;
        for (int j = n-1; j > 0 ; j-- )
        {
          biSum += pre[j];
          dp[j-1] = biSum;
        }
      }
      else
      {
        C1097Int<> biSum = 0;
        for (int j = n - 1; j > 0; j--)
        {//j是小于strRes[i]的数目
          const int iMore = n - (i + 1) - j;
          if (iMore < 0)
          {
            continue;
          }
          const int iNewMore = n - (i + 1+1) - (j-1);
          biSum += pre[iMore];
          dp[iNewMore] = biSum;
        }
      }
      pre.swap(dp);
    }
    auto bi = std::accumulate(pre.begin(), pre.end(), C1097Int<>(0));
    return bi.ToInt();
  }
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

| 鄙人想对大家说的话

|

|-|

|闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。|

| 墨家名称的来源:有所得以墨记之。 |

|如果程序是一条龙,那算法就是他的是睛|

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境:

VS2022 C++17


相关文章
|
2月前
|
编译器 C++ 容器
【c++丨STL】基于红黑树模拟实现set和map(附源码)
本文基于红黑树的实现,模拟了STL中的`set`和`map`容器。通过封装同一棵红黑树并进行适配修改,实现了两种容器的功能。主要步骤包括:1) 修改红黑树节点结构以支持不同数据类型;2) 使用仿函数适配键值比较逻辑;3) 实现双向迭代器支持遍历操作;4) 封装`insert`、`find`等接口,并为`map`实现`operator[]`。最终,通过测试代码验证了功能的正确性。此实现减少了代码冗余,展示了模板与仿函数的强大灵活性。
79 2
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
|
2月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
5月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
275 80
|
3月前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
300 0
|
3月前
|
安全 C语言 C++
彻底摘明白 C++ 的动态内存分配原理
大家好,我是V哥。C++的动态内存分配允许程序在运行时请求和释放内存,主要通过`new`/`delete`(用于对象)及`malloc`/`calloc`/`realloc`/`free`(继承自C语言)实现。`new`分配并初始化对象内存,`delete`释放并调用析构函数;而`malloc`等函数仅处理裸内存,不涉及构造与析构。掌握这些可有效管理内存,避免泄漏和悬空指针问题。智能指针如`std::unique_ptr`和`std::shared_ptr`能自动管理内存,确保异常安全。关注威哥爱编程,了解更多全栈开发技巧。 先赞再看后评论,腰缠万贯财进门。
199 0
|
5月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
5月前
|
编译器 C语言 C++
【c++丨STL】list模拟实现(附源码)
本文介绍了如何模拟实现C++中的`list`容器。`list`底层采用双向带头循环链表结构,相较于`vector`和`string`更为复杂。文章首先回顾了`list`的基本结构和常用接口,然后详细讲解了节点、迭代器及容器的实现过程。 最终,通过这些步骤,我们成功模拟实现了`list`容器的功能。文章最后提供了完整的代码实现,并简要总结了实现过程中的关键点。 如果你对双向链表或`list`的底层实现感兴趣,建议先掌握相关基础知识后再阅读本文,以便更好地理解内容。
97 1
|
5月前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
437 4
|
6月前
|
C语言 C++ 容器
【c++丨STL】string模拟实现(附源码)
本文详细介绍了如何模拟实现C++ STL中的`string`类,包括其构造函数、拷贝构造、赋值重载、析构函数等基本功能,以及字符串的插入、删除、查找、比较等操作。文章还展示了如何实现输入输出流操作符,使自定义的`string`类能够方便地与`cin`和`cout`配合使用。通过这些实现,读者不仅能加深对`string`类的理解,还能提升对C++编程技巧的掌握。
295 5

热门文章

最新文章