使用Pytorch Geometric 进行链接预测代码示例

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: PyTorch Geometric (PyG)是构建图神经网络模型和实验各种图卷积的主要工具。在本文中我们将通过链接预测来对其进行介绍。

链接预测答了一个问题:哪两个节点应该相互链接?我们将通过执行“转换分割”,为建模准备数据。为批处理准备专用的图数据加载器。在Torch Geometric中构建一个模型,使用PyTorch Lightning进行训练,并检查模型的性能。

库准备

Torch 这个就不用多介绍了

Torch Geometric 图形神经网络的主要库,也是本文介绍的重点

PyTorch Lightning 用于训练、调优和验证模型。它简化了训练的操作

Sklearn Metrics和Torchmetrics 用于检查模型的性能。

PyTorch Geometric有一些特定的依赖关系,如果你安装有问题,请参阅其官方文档。

数据准备

我们将使用Cora ML引文数据集。数据集可以通过Torch Geometric访问。

 data = tg.datasets.CitationFull(root="data", name="Cora_ML")

默认情况下,Torch Geometric数据集可以返回多个图形。我们看看单个图是什么样子的

 data[0]
 > Data(x=[2995, 2879], edge_index=[2, 16316], y=[2995])

这里的 X是节点的特征。edge_index是2 x (n条边)矩阵(第一维= 2,被解释为:第0行-源节点/“发送方”,第1行-目标节点/“接收方”)。

链接拆分

我们将从拆分数据集中的链接开始。使用20%的图链接作为验证集,10%作为测试集。这里不会向训练数据集中添加负样本,因为这样的负链接将由批处理数据加载器实时创建。

一般来说,负采样会创建“假”样本(在我们的例子中是节点之间的链接),因此模型学习如何区分真实和虚假的链接。负抽样基于抽样的理论和数学,具有一些很好的统计性质。

首先:让我们创建一个链接拆分对象。

 link_splitter = tg.transforms.RandomLinkSplit(
     num_val=0.2, 
     num_test=0.1, 
     add_negative_train_samples=False,
     disjoint_train_ratio=0.8)

disjoint_train_ratio调节在“监督”阶段将使用多少条边作为训练信息。剩余的边将用于消息传递(网络中的信息传输阶段)。

图神经网络中至少有两种分割边的方法:归纳分割和传导分割。转换方法假设GNN需要从图结构中学习结构模式。在归纳设置中,可以使用节点/边缘标签进行学习。本文最后有两篇论文详细讨论了这些概念,并进行了额外的形式化:([1],[3])。

 train_g, val_g, test_g = link_splitter(data[0])

 > Data(x=[2995, 2879], edge_index=[2, 2285], y=[2995], edge_label=[9137], edge_label_index=[2, 9137])

在这个操作之后,我们有了一些新的属性:

edge_label :描述边缘是否为真/假。这是我们想要预测的。

edge_label_index 是一个2 x NUM EDGES矩阵,用于存储节点链接。

让我们看看样本的分布

 th.unique(train_g.edge_label, return_counts=True)
 > (tensor([1.]), tensor([9137]))

 th.unique(val_g.edge_label, return_counts=True)
 > (tensor([0., 1.]), tensor([3263, 3263]))

 th.unique(val_g.edge_label, return_counts=True)
 > (tensor([0., 1.]), tensor([3263, 3263]))

对于训练数据没有负边(我们将训练时创建它们),对于val/测试集——已经以50:50的比例有了一些“假”链接。

模型

现在我们可以在使用GNN进行模型的构建了一个

 class GNN(nn.Module):

     def __init__(
         self, 
         dim_in: int, 
         conv_sizes: Tuple[int, ...], 
         act_f: nn.Module = th.relu, 
         dropout: float = 0.1,
         *args, 
         **kwargs):
         super().__init__()
         self.dim_in = dim_in
         self.dim_out = conv_sizes[-1]
         self.dropout = dropout
         self.act_f = act_f
         last_in = dim_in
         layers = []

         # Here we build subsequent graph convolutions.
         for conv_sz in conv_sizes:
             # Single graph convolution layer
             conv = tgnn.SAGEConv(in_channels=last_in, out_channels=conv_sz, *args, **kwargs)
             last_in = conv_sz
             layers.append(conv)
         self.layers = nn.ModuleList(layers)

     def forward(self, x: th.Tensor, edge_index: th.Tensor) -> th.Tensor:
         h = x
         # For every graph convolution in the network...
         for conv in self.layers:
             # ... perform node embedding via message passing
             h = conv(h, edge_index)
             h = self.act_f(h)
             if self.dropout:
                 h = nn.functional.dropout(h, p=self.dropout, training=self.training)
         return h

这个模型中值得注意的部分是一组图卷积——在我们的例子中是SAGEConv。SAGE卷积的正式定义为:

v是当前节点,节点v的N(v)个邻居。要了解更多关于这种卷积类型的信息,请查看GraphSAGE[1]的原始论文

让我们检查一下模型是否可以使用准备好的数据进行预测。这里PyG模型的输入是节点特征X的矩阵和定义edge_index的链接。

 gnn = GNN(train_g.x.size()[1], conv_sizes=[512, 256, 128])
 with th.no_grad():
     out = gnn(train_g.x, train_g.edge_index)

 out


 > tensor([[0.0000, 0.0000, 0.0051,  ..., 0.0997, 0.0000, 0.0000],
         [0.0107, 0.0000, 0.0576,  ..., 0.0651, 0.0000, 0.0000],
         [0.0000, 0.0000, 0.0102,  ..., 0.0973, 0.0000, 0.0000],
         ...,
         [0.0000, 0.0000, 0.0549,  ..., 0.0671, 0.0000, 0.0000],
         [0.0000, 0.0000, 0.0166,  ..., 0.0000, 0.0000, 0.0000],
         [0.0000, 0.0000, 0.0034,  ..., 0.1111, 0.0000, 0.0000]])

我们模型的输出是一个维度为:N个节点x嵌入大小的节点嵌入矩阵。

PyTorch Lightning

PyTorch Lightning主要用作训练,但是这里我们在GNN的输出后面增加了一个Linear层做为预测是否链接的输出头。

 class LinkPredModel(pl.LightningModule):

     def __init__(
         self,
         dim_in: int,
         conv_sizes: Tuple[int, ...], 
         act_f: nn.Module = th.relu, 
         dropout: float = 0.1,
         lr: float = 0.01,
         *args, **kwargs):
         super().__init__()

         # Our inner GNN model
         self.gnn = GNN(dim_in, conv_sizes=conv_sizes, act_f=act_f, dropout=dropout)

         # Final prediction model on links.
         self.lin_pred = nn.Linear(self.gnn.dim_out, 1)
         self.lr = lr

     def forward(self, x: th.Tensor, edge_index: th.Tensor) -> th.Tensor:
         # Step 1: make node embeddings using GNN.
         h = self.gnn(x, edge_index)

         # Take source nodes embeddings- senders
         h_src = h[edge_index[0, :]]
         # Take target node embeddings - receivers
         h_dst = h[edge_index[1, :]]

         # Calculate the product between them
         src_dst_mult = h_src * h_dst
         # Apply non-linearity
         out = self.lin_pred(src_dst_mult)
         return out

     def _step(self, batch: th.Tensor, phase: str='train') -> th.Tensor:
         yhat_edge = self(batch.x, batch.edge_label_index).squeeze()
         y = batch.edge_label
         loss = nn.functional.binary_cross_entropy_with_logits(input=yhat_edge, target=y)
         f1 = tm.functional.f1_score(preds=yhat_edge, target=y, task='binary')
         prec = tm.functional.precision(preds=yhat_edge, target=y, task='binary')
         recall = tm.functional.recall(preds=yhat_edge, target=y, task='binary')

         # Watch for logging here - we need to provide batch_size, as (at the time of this implementation)
         # PL cannot understand the batch size.
         self.log(f"{phase}_f1", f1, batch_size=batch.edge_label_index.shape[1])
         self.log(f"{phase}_loss", loss, batch_size=batch.edge_label_index.shape[1])
         self.log(f"{phase}_precision", prec, batch_size=batch.edge_label_index.shape[1])
         self.log(f"{phase}_recall", recall, batch_size=batch.edge_label_index.shape[1])

         return loss

     def training_step(self, batch, batch_idx):
         return self._step(batch)

     def validation_step(self, batch, batch_idx):
         return self._step(batch, "val")

     def test_step(self, batch, batch_idx):
         return self._step(batch, "test")

     def predict_step(self, batch):
         x, edge_index = batch
         return self(x, edge_index)

     def configure_optimizers(self):
         return th.optim.Adam(self.parameters(), lr=self.lr)

PyTorch Lightning的作用是帮我们简化了训练的步骤,我们只需要配置一些函数即可,我们可以使用以下命令测试模型是否可用

 model = LinkPredModel(val_g.x.size()[1], conv_sizes=[512, 256, 128])
 with th.no_grad():
     out = model.predict_step((val_g.x, val_g.edge_label_index))

训练

对于训练的步骤,需要特殊处理的是数据加载器。

图数据需要特殊处理——尤其是链接预测。PyG有一些专门的数据加载器类,它们负责正确地生成批处理。我们将使用:tg.loader.LinkNeighborLoader,它接受以下输入:

要批量加载的数据(图)。num_neighbors 每个节点在一次“跳”期间加载的最大邻居数量。指定邻居数目的列表1 - 2 - 3 -…-K。对于非常大的图形特别有用。

edge_label_index 哪个属性已经指示了真/假链接。

neg_sampling_ratio -负样本与真实样本的比例。

 train_loader = tg.loader.LinkNeighborLoader(
     train_g,
     num_neighbors=[-1, 10, 5],
     batch_size=128,
     edge_label_index=train_g.edge_label_index,

     # "on the fly" negative sampling creation for batch
     neg_sampling_ratio=0.5
 )

 val_loader = tg.loader.LinkNeighborLoader(
     val_g,
     num_neighbors=[-1, 10, 5],
     batch_size=128,
     edge_label_index=val_g.edge_label_index,
     edge_label=val_g.edge_label,

     # negative samples for val set are done already as ground-truth
     neg_sampling_ratio=0.0
 )

 test_loader = tg.loader.LinkNeighborLoader(
     test_g,
     num_neighbors=[-1, 10, 5],
     batch_size=128,
     edge_label_index=test_g.edge_label_index,
     edge_label=test_g.edge_label,

     # negative samples for test set are done already as ground-truth
     neg_sampling_ratio=0.0
 )

下面就是训练模型

 model = LinkPredModel(val_g.x.size()[1], conv_sizes=[512, 256, 128])
 trainer = pl.Trainer(max_epochs=20, log_every_n_steps=5)

 # Validate before training - we will see results of untrained model.
 trainer.validate(model, val_loader)

 # Train the model
 trainer.fit(model=model, train_dataloaders=train_loader, val_dataloaders=val_loader)

试验数据核对,查看分类报告和ROC曲线。

 with th.no_grad():
     yhat_test_proba = th.sigmoid(model(test_g.x, test_g.edge_label_index)).squeeze()
     yhat_test_cls = yhat_test_proba >= 0.5

 print(classification_report(y_true=test_g.edge_label, y_pred=yhat_test_cls))

结果看起来还不错:

               precision    recall  f1-score   support

          0.0       0.68      0.70      0.69      1631
          1.0       0.69      0.66      0.68      1631

     accuracy                           0.68      3262
    macro avg       0.68      0.68      0.68      3262
 weighted avg       0.68      0.68      0.68      3262

ROC曲线也不错

我们训练的模型并不特别复杂,也没有经过精心调整,但它完成了工作。当然这只是一个为了演示使用的小型数据集。

总结

图神经网络尽管看起来很复杂,但是PyTorch Geometric为我们提供了一个很好的解决方案。我们可以直接使用其中内置的模型实现,这方便了我们使用和简化了入门的门槛。

本文代码:

https://avoid.overfit.cn/post/e14c4369776243d68c22c4a2a0346db2

参考:

  1. Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
  2. McCormick, C. (2017). Word2Vec Tutorial Part 2 — Negative Sampling.
  3. Rossi, A., Tiezzi, M., Dimitri, G. M., Bianchini, M., Maggini, M., & Scarselli, F. (2018). Inductive–transductive learning with graph neural networks. In Artificial Neural Networks in Pattern Recognition: 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy, September 19–21, 2018, Proceedings 8 (pp. 201–212). Springer International Publishing.

作者:Filip Wójcik

目录
相关文章
|
1月前
|
存储 物联网 PyTorch
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践
163 59
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
125 10
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
本文介绍了几种常用的计算机视觉注意力机制及其PyTorch实现,包括SENet、CBAM、BAM、ECA-Net、SA-Net、Polarized Self-Attention、Spatial Group-wise Enhance和Coordinate Attention等,每种方法都附有详细的网络结构说明和实验结果分析。通过这些注意力机制的应用,可以有效提升模型在目标检测任务上的性能。此外,作者还提供了实验数据集的基本情况及baseline模型的选择与实验结果,方便读者理解和复现。
67 0
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
|
5月前
|
机器学习/深度学习 PyTorch 编译器
Pytorch的编译新特性TorchDynamo的工作原理和使用示例
PyTorch的TorchDynamo是一个即时编译器,用于优化动态图执行,提高运行效率。它在运行时分析和转换代码,应用优化技术,如操作符融合,然后编译成高效机器码。通过一个包含特征工程、超参数调整、交叉验证的合成数据集示例,展示了TorchDynamo如何减少训练时间并提高模型性能。它易于集成,只需对现有PyTorch代码进行小改动,即可利用其性能提升。TorchDynamo的优化包括动态捕获计算图、应用优化和编译,适用于实时应用和需要快速响应的场景。
92 11
|
5月前
|
资源调度 PyTorch 调度
多任务高斯过程数学原理和Pytorch实现示例
本文探讨了如何使用高斯过程扩展到多任务场景,强调了多任务高斯过程(MTGP)在处理相关输出时的优势。通过独立多任务GP、内在模型(ICM)和线性模型(LMC)的核心区域化方法,MTGP能够捕捉任务间的依赖关系,提高泛化能力。ICM和LMC通过引入核心区域化矩阵来学习任务间的共享结构。在PyTorch中,使用GPyTorch库展示了如何实现ICM模型,包括噪声建模和训练过程。实验比较了MTGP与独立GP,显示了MTGP在预测性能上的提升。
101 7
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
7月前
|
机器学习/深度学习 存储 并行计算
深入解析xLSTM:LSTM架构的演进及PyTorch代码实现详解
xLSTM的新闻大家可能前几天都已经看过了,原作者提出更强的xLSTM,可以将LSTM扩展到数十亿参数规模,我们今天就来将其与原始的lstm进行一个详细的对比,然后再使用Pytorch实现一个简单的xLSTM。
303 2
|
7月前
|
机器学习/深度学习 JSON PyTorch
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
112 1
下一篇
DataWorks