【深度学习】实验15 使用CNN完成MNIST手写体识别(Keras)

简介: 【深度学习】实验15 使用CNN完成MNIST手写体识别(Keras)

使用CNN完成MNIST手写体识别(Keras)

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习算法,是处理具有类似网格结构的数据的强大工具,例如图像和声音。CNN主要用于图像识别、语音识别、自然语言处理等领域,是目前计算机视觉领域最有效的算法之一。


卷积神经网络的主要特点是局部连接、权值共享和池化。局部连接意味着每个神经元仅与输入数据的一小部分相连;权值共享意味着所有的神经元使用相同的权值矩阵进行卷积计算;池化则是在卷积计算之后对输出进行降采样。这些特性使得CNN非常适合处理图像数据。


CNN的结构通常由多个卷积层、池化层和全连接层组成,其中卷积层和池化层用于提取图像的特征,全连接层则用于将这些特征映射到输出结果上。在训练过程中,CNN通过反向传播算法更新权值矩阵,使得网络能够自动学习到最适合任务的特征表示。在测试过程中,CNN通过前向传播算法将输入数据传入网络中,并得到输出结果。


CNN的应用非常广泛,例如人脸识别、物体识别、图像分类、图像分割、目标检测等。在物体识别和图像分类任务中,CNN通常使用ImageNet数据集进行训练,该数据集包含数百万张图像和数千个类别,是计算机视觉领域最大的数据集之一。在目标检测任务中,CNN通常使用Faster R-CNN、YOLO、SSD等网络结构,将物体位置和类别同时预测出来。


总的来说,卷积神经网络是一种非常强大的深度学习算法,具有优秀的图像处理能力,但在实际应用过程中也存在一些问题,例如训练时间长、需要更多的计算资源和数据集等。随着技术的不断进步和发展,相信CNN在未来会得到更广泛的应用。

1. 导入Keras库

# 导入相关库
from keras.datasets import mnist
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Flatten, Dropout, Dense
from keras.losses import categorical_crossentropy
from keras.optimizers import Adadelta
Using TensorFlow backend.

2. 数据集

# 导入数据集
train_X, train_y = mnist.load_data()[0]
train_X, train_y
(array([[[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   ...,
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]]], dtype=uint8),
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8))
# 训练集
train_X = train_X.reshape(-1, 28 ,28, 1)
train_X = train_X.astype('float32')
train_X /= 255
train_y = to_categorical(train_y, 10)

3. 构造神经网络

# 构造神经网络
model = Sequential()
model.add(Conv2D(32, (5, 5), activation='relu', input_shape=[28, 28, 1]))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss=categorical_crossentropy, optimizer=Adadelta(), metrics=['accuracy'])

4. 训练模型

# 开始训练
batch_size = 100
epochs = 1
model.fit(train_X, train_y, batch_size=batch_size, epochs=epochs)
   WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
   Epoch 1/1
   60000/60000 [==============================] - 190s 3ms/step - loss: 0.2228 - accuracy: 0.9316
   <keras.callbacks.callbacks.History at 0x7f7835e74940>

5. 测试模型

# 测试准确率
test_X, test_y = mnist.load_data()[1]
test_X = test_X.reshape(-1, 28, 28, 1)
test_X = test_X.astype('float32')
test_X /= 255
test_y = to_categorical(test_y, 10)
loss, accuracy = model.evaluate(test_X, test_y, verbose=1)
print('loss:%.4f accuracy:%.4f' %(loss, accuracy))
   10000/10000 [==============================] - 9s 919us/step
   loss:0.0467 accuracy:0.9844


目录
相关文章
|
2天前
|
机器学习/深度学习 TensorFlow 数据处理
使用Python实现深度学习模型:医学影像识别与疾病预测
【7月更文挑战第24天】 使用Python实现深度学习模型:医学影像识别与疾病预测
15 4
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介
**RNN**,1986年提出,用于序列数据,如语言模型和语音识别,但原始模型有梯度消失问题。**LSTM**和**GRU**通过门控解决了此问题。 **CNN**,1989年引入,擅长图像处理,卷积层和池化层提取特征,经典应用包括图像分类和物体检测,如LeNet-5。 **Transformer**,2017年由Google推出,自注意力机制实现并行计算,优化了NLP效率,如机器翻译。 **BERT**,2018年Google的双向预训练模型,通过掩码语言模型改进上下文理解,适用于问答和文本分类。
59 9
|
13天前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
|
2天前
|
机器学习/深度学习 数据采集 TensorFlow
深度学习与传统模型的桥梁:Sklearn与Keras的集成应用
【7月更文第24天】在机器学习领域,Scikit-learn(Sklearn)作为经典的传统机器学习库,以其丰富的预处理工具、模型选择和评估方法而闻名;而Keras作为深度学习领域的明星框架,以其简洁易用的API,支持快速构建和实验复杂的神经网络模型。将这两者结合起来,可以实现从传统机器学习到深度学习的无缝过渡,充分发挥各自的优势,打造更强大、更灵活的解决方案。本文将探讨Sklearn与Keras的集成应用,通过实例展示如何在Sklearn的生态系统中嵌入Keras模型,实现模型的训练、评估与优化。
23 0
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。
【7月更文挑战第2天】计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。AlexNet开启新时代,后续模型不断优化,推动对象检测、语义分割、图像生成等领域发展。尽管面临数据隐私、模型解释性等挑战,深度学习已广泛应用于安防、医疗、零售和农业,预示着更智能、高效的未来,同时也强调了技术创新、伦理考量的重要性。
19 1
|
5天前
|
机器学习/深度学习 算法 BI
基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真
**摘要:** 本文介绍了使用MATLAB2022a实现的基于GoogLeNet的USB摄像头手势识别系统。系统通过摄像头捕获视频,利用深度学习的卷积神经网络进行手势检测与识别。GoogLeNet网络的Inception模块优化了计算效率,避免过拟合。手势检测涉及RPN生成候选框,送入网络进行分类。系统架构包括视频采集、手势检测与识别、以及决策反馈。通过GPU加速和模型优化保证实时性能,应用于智能家居等场景。
|
21天前
|
机器学习/深度学习 物联网 区块链
未来触手可及:探索区块链、物联网和虚拟现实的革新之路探索深度学习中的卷积神经网络(CNN)
随着科技的飞速发展,新兴技术如区块链、物联网(IoT)和虚拟现实(VR)正不断重塑我们的工作和生活方式。本文将深入探讨这些技术的最新发展趋势,分析它们如何在不同行业实现应用革新,并预测其未来的融合潜力。我们将从技术的基本原理出发,通过案例研究,揭示它们在现实世界中的创新应用场景,并讨论面临的挑战与机遇。 在机器学习领域,卷积神经网络(CNN)已成为图像识别和处理的基石。本文深入探讨了CNN的核心原理、架构以及在多个领域的应用实例,旨在为读者提供从理论到实践的全面理解。
|
29天前
|
机器学习/深度学习 算法 数据可视化
基于googlenet深度学习网络的睁眼闭眼识别算法matlab仿真
**算法预览图展示睁眼闭眼识别效果;使用Matlab2022a,基于GoogLeNet的CNN模型,对图像进行分类预测并可视化。核心代码包括图像分类及随机样本显示。理论概述中,GoogLeNet以高效Inception模块实现眼部状态的深度学习识别,确保准确性与计算效率。附带三张相关图像。**
|
1月前
|
机器学习/深度学习 自然语言处理 TensorFlow
深入浅出:理解和实现深度学习中的卷积神经网络(CNN)
在当今的数据驱动世界,深度学习已经成为许多领域的关键技术。本文将深入探讨卷积神经网络(CNN)的原理、结构和应用,旨在帮助读者全面理解这项强大的技术,并提供实际的实现技巧。
100 0
|
1月前
|
机器学习/深度学习 存储 监控
基于YOLOv8深度学习的120种犬类检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战、狗类检测、犬种识别
基于YOLOv8深度学习的120种犬类检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战、狗类检测、犬种识别

热门文章

最新文章