【深度学习】实验15 使用CNN完成MNIST手写体识别(Keras)

简介: 【深度学习】实验15 使用CNN完成MNIST手写体识别(Keras)

使用CNN完成MNIST手写体识别(Keras)

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习算法,是处理具有类似网格结构的数据的强大工具,例如图像和声音。CNN主要用于图像识别、语音识别、自然语言处理等领域,是目前计算机视觉领域最有效的算法之一。


卷积神经网络的主要特点是局部连接、权值共享和池化。局部连接意味着每个神经元仅与输入数据的一小部分相连;权值共享意味着所有的神经元使用相同的权值矩阵进行卷积计算;池化则是在卷积计算之后对输出进行降采样。这些特性使得CNN非常适合处理图像数据。


CNN的结构通常由多个卷积层、池化层和全连接层组成,其中卷积层和池化层用于提取图像的特征,全连接层则用于将这些特征映射到输出结果上。在训练过程中,CNN通过反向传播算法更新权值矩阵,使得网络能够自动学习到最适合任务的特征表示。在测试过程中,CNN通过前向传播算法将输入数据传入网络中,并得到输出结果。


CNN的应用非常广泛,例如人脸识别、物体识别、图像分类、图像分割、目标检测等。在物体识别和图像分类任务中,CNN通常使用ImageNet数据集进行训练,该数据集包含数百万张图像和数千个类别,是计算机视觉领域最大的数据集之一。在目标检测任务中,CNN通常使用Faster R-CNN、YOLO、SSD等网络结构,将物体位置和类别同时预测出来。


总的来说,卷积神经网络是一种非常强大的深度学习算法,具有优秀的图像处理能力,但在实际应用过程中也存在一些问题,例如训练时间长、需要更多的计算资源和数据集等。随着技术的不断进步和发展,相信CNN在未来会得到更广泛的应用。

1. 导入Keras库

# 导入相关库
from keras.datasets import mnist
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Flatten, Dropout, Dense
from keras.losses import categorical_crossentropy
from keras.optimizers import Adadelta
Using TensorFlow backend.

2. 数据集

# 导入数据集
train_X, train_y = mnist.load_data()[0]
train_X, train_y
(array([[[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   ...,
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]]], dtype=uint8),
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8))
# 训练集
train_X = train_X.reshape(-1, 28 ,28, 1)
train_X = train_X.astype('float32')
train_X /= 255
train_y = to_categorical(train_y, 10)

3. 构造神经网络

# 构造神经网络
model = Sequential()
model.add(Conv2D(32, (5, 5), activation='relu', input_shape=[28, 28, 1]))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss=categorical_crossentropy, optimizer=Adadelta(), metrics=['accuracy'])

4. 训练模型

# 开始训练
batch_size = 100
epochs = 1
model.fit(train_X, train_y, batch_size=batch_size, epochs=epochs)
   WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
   Epoch 1/1
   60000/60000 [==============================] - 190s 3ms/step - loss: 0.2228 - accuracy: 0.9316
   <keras.callbacks.callbacks.History at 0x7f7835e74940>

5. 测试模型

# 测试准确率
test_X, test_y = mnist.load_data()[1]
test_X = test_X.reshape(-1, 28, 28, 1)
test_X = test_X.astype('float32')
test_X /= 255
test_y = to_categorical(test_y, 10)
loss, accuracy = model.evaluate(test_X, test_y, verbose=1)
print('loss:%.4f accuracy:%.4f' %(loss, accuracy))
   10000/10000 [==============================] - 9s 919us/step
   loss:0.0467 accuracy:0.9844


目录
相关文章
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
82 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其应用
【9月更文挑战第24天】本文将深入探讨深度学习中的一种重要模型——卷积神经网络(CNN)。我们将通过简单的代码示例,了解CNN的工作原理和应用场景。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
102 1
|
6天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
21天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
28天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
81 1
|
7天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
21 0
|
10天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
16天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
24天前
|
机器学习/深度学习 人工智能 自动驾驶
深入理解深度学习中的卷积神经网络(CNN)
【10月更文挑战第18天】深入理解深度学习中的卷积神经网络(CNN)
33 0

热门文章

最新文章