【深度学习】实验15 使用CNN完成MNIST手写体识别(Keras)

简介: 【深度学习】实验15 使用CNN完成MNIST手写体识别(Keras)

使用CNN完成MNIST手写体识别(Keras)

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习算法,是处理具有类似网格结构的数据的强大工具,例如图像和声音。CNN主要用于图像识别、语音识别、自然语言处理等领域,是目前计算机视觉领域最有效的算法之一。


卷积神经网络的主要特点是局部连接、权值共享和池化。局部连接意味着每个神经元仅与输入数据的一小部分相连;权值共享意味着所有的神经元使用相同的权值矩阵进行卷积计算;池化则是在卷积计算之后对输出进行降采样。这些特性使得CNN非常适合处理图像数据。


CNN的结构通常由多个卷积层、池化层和全连接层组成,其中卷积层和池化层用于提取图像的特征,全连接层则用于将这些特征映射到输出结果上。在训练过程中,CNN通过反向传播算法更新权值矩阵,使得网络能够自动学习到最适合任务的特征表示。在测试过程中,CNN通过前向传播算法将输入数据传入网络中,并得到输出结果。


CNN的应用非常广泛,例如人脸识别、物体识别、图像分类、图像分割、目标检测等。在物体识别和图像分类任务中,CNN通常使用ImageNet数据集进行训练,该数据集包含数百万张图像和数千个类别,是计算机视觉领域最大的数据集之一。在目标检测任务中,CNN通常使用Faster R-CNN、YOLO、SSD等网络结构,将物体位置和类别同时预测出来。


总的来说,卷积神经网络是一种非常强大的深度学习算法,具有优秀的图像处理能力,但在实际应用过程中也存在一些问题,例如训练时间长、需要更多的计算资源和数据集等。随着技术的不断进步和发展,相信CNN在未来会得到更广泛的应用。

1. 导入Keras库

# 导入相关库
from keras.datasets import mnist
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Flatten, Dropout, Dense
from keras.losses import categorical_crossentropy
from keras.optimizers import Adadelta
Using TensorFlow backend.

2. 数据集

# 导入数据集
train_X, train_y = mnist.load_data()[0]
train_X, train_y
(array([[[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   ...,
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]]], dtype=uint8),
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8))
# 训练集
train_X = train_X.reshape(-1, 28 ,28, 1)
train_X = train_X.astype('float32')
train_X /= 255
train_y = to_categorical(train_y, 10)

3. 构造神经网络

# 构造神经网络
model = Sequential()
model.add(Conv2D(32, (5, 5), activation='relu', input_shape=[28, 28, 1]))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss=categorical_crossentropy, optimizer=Adadelta(), metrics=['accuracy'])

4. 训练模型

# 开始训练
batch_size = 100
epochs = 1
model.fit(train_X, train_y, batch_size=batch_size, epochs=epochs)
   WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
   Epoch 1/1
   60000/60000 [==============================] - 190s 3ms/step - loss: 0.2228 - accuracy: 0.9316
   <keras.callbacks.callbacks.History at 0x7f7835e74940>

5. 测试模型

# 测试准确率
test_X, test_y = mnist.load_data()[1]
test_X = test_X.reshape(-1, 28, 28, 1)
test_X = test_X.astype('float32')
test_X /= 255
test_y = to_categorical(test_y, 10)
loss, accuracy = model.evaluate(test_X, test_y, verbose=1)
print('loss:%.4f accuracy:%.4f' %(loss, accuracy))
   10000/10000 [==============================] - 9s 919us/step
   loss:0.0467 accuracy:0.9844


目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
3月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
141 1
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
472 7
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
3月前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
90 1
|
3月前
|
机器学习/深度学习 数据采集 PyTorch
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
3月前
|
机器学习/深度学习 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
59 0

热门文章

最新文章

相关实验场景

更多