【深度学习】实验06 使用TensorFlow完成线性回归

简介: 【深度学习】实验06 使用TensorFlow完成线性回归

使用TensorFlow完成线性回归

TensorFlow是由Google开发的一个开源的机器学习框架。它可以让开发者更加轻松地构建和训练深度学习模型,从而解决各种自然语言处理、计算机视觉、语音识别、推荐系统等领域的问题。


TensorFlow的主要特点是灵活性和可伸缩性。它实现了一种基于数据流图的计算模型,使得用户可以定义自己的计算图,控制模型的计算过程。同时,TensorFlow支持分布式计算,使得用户可以在多台机器上运行大规模计算任务,从而提高计算效率。


TensorFlow包含了许多高级API,例如Keras和Estimator,使得用户可以更加轻松地构建和训练深度学习模型。Keras提供了一个易于使用的高级API,使得用户可以在不需要深入了解TensorFlow的情况下,构建和训练深度学习模型。Estimator则提供了一种更加低级的API,使得用户可以更加灵活地定义模型的结构和训练过程。


TensorFlow还提供了一个交互式开发环境,称为TensorBoard,可以帮助用户可视化模型的计算图、训练过程和性能指标,从而更加直观地理解和调试深度学习模型。


由于TensorFlow的灵活性和可伸缩性,它已经被广泛应用于各个领域,包括自然语言处理、计算机视觉、语音识别、推荐系统等。例如,在自然语言处理领域,TensorFlow被用于构建和训练各种强大的模型,例如机器翻译模型、文本分类模型、语言生成模型等。


总的来说,TensorFlow是一个强大的机器学习框架,可以帮助用户更加轻松地构建和训练深度学习模型。随着深度学习技术的不断发展,TensorFlow将继续发挥重要的作用,推动各个领域的发展和创新。

1. 导入TensorFlow库

# 导入相关库
%matplotlib inline
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

2. 构造数据集

# 产出样本点个数
n_observations = 100
# 产出-3~3之间的样本点
xs = np.linspace(-3, 3, n_observations) 
# sin扰动
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations) 
xs
   array([-3.        , -2.93939394, -2.87878788, -2.81818182, -2.75757576,
          -2.6969697 , -2.63636364, -2.57575758, -2.51515152, -2.45454545,
          -2.39393939, -2.33333333, -2.27272727, -2.21212121, -2.15151515,
          -2.09090909, -2.03030303, -1.96969697, -1.90909091, -1.84848485,
          -1.78787879, -1.72727273, -1.66666667, -1.60606061, -1.54545455,
          -1.48484848, -1.42424242, -1.36363636, -1.3030303 , -1.24242424,
          -1.18181818, -1.12121212, -1.06060606, -1.        , -0.93939394,
          -0.87878788, -0.81818182, -0.75757576, -0.6969697 , -0.63636364,
          -0.57575758, -0.51515152, -0.45454545, -0.39393939, -0.33333333,
          -0.27272727, -0.21212121, -0.15151515, -0.09090909, -0.03030303,
           0.03030303,  0.09090909,  0.15151515,  0.21212121,  0.27272727,
           0.33333333,  0.39393939,  0.45454545,  0.51515152,  0.57575758,
           0.63636364,  0.6969697 ,  0.75757576,  0.81818182,  0.87878788,
           0.93939394,  1.        ,  1.06060606,  1.12121212,  1.18181818,
           1.24242424,  1.3030303 ,  1.36363636,  1.42424242,  1.48484848,
           1.54545455,  1.60606061,  1.66666667,  1.72727273,  1.78787879,
           1.84848485,  1.90909091,  1.96969697,  2.03030303,  2.09090909,
           2.15151515,  2.21212121,  2.27272727,  2.33333333,  2.39393939,
           2.45454545,  2.51515152,  2.57575758,  2.63636364,  2.6969697 ,
           2.75757576,  2.81818182,  2.87878788,  2.93939394,  3.        ])
ys
   array([-0.62568008,  0.01486274, -0.29232541, -0.05271084,
-0.53407957,
          -0.37199581, -0.40235236, -0.80005504, -0.2280913 , -0.96111433,
          -0.58732159, -0.71310851, -1.19817878, -0.93036437, -1.02682804,
          -1.33669261, -1.36873043, -0.44500172, -1.38769079, -0.52899793,
          -0.78090929, -1.1470421 , -0.79274726, -0.95139505, -1.3536293 ,
          -1.15097615, -1.04909201, -0.89071026, -0.81181765, -0.70292996,
          -0.49732344, -1.22800179, -1.21280414, -0.59583172, -1.05027515,
          -0.56369191, -0.68680323, -0.20454038, -0.32429566, -0.84640122,
          -0.08175012, -0.76910728, -0.59206189, -0.09984673, -0.52465978,
          -0.30498277,  0.08593627, -0.29488864,  0.24698113, -0.07324925,
           0.12773032,  0.55508531,  0.14794648,  0.40155342,  0.31717698,
           0.63213964,  0.35736413,  0.05264068,  0.39858619,  1.00710311,
           0.73844747,  1.12858026,  0.59779567,  1.22131999,  0.80849061,
           0.72796849,  1.0990044 ,  0.45447096,  1.15217952,  1.31846002,
           1.27140258,  0.65264777,  1.15205186,  0.90705463,  0.82489198,
           0.50572125,  1.47115594,  0.98209434,  0.95763951,  0.50225094,
           1.40415029,  0.74618984,  0.90620692,  0.40593222,  0.62737999,
           1.05236579,  1.20041249,  1.14784273,  0.54798933,  0.18167682,
           0.50830766,  0.92498585,  0.9778136 ,  0.42331405,  0.88163729,
           0.67235809, -0.00539421, -0.06219493,  0.26436412,  0.51978602])
# 可视化图长和宽
plt.rcParams["figure.figsize"] = (6,4)
# 绘制散点图
plt.scatter(xs, ys) 
plt.show()

3. 定义基本模型

# 占位
X = tf.placeholder(tf.float32, name='X')
Y = tf.placeholder(tf.float32, name='Y')
# 随机采样出变量
W = tf.Variable(tf.random_normal([1]), name='weight') 
b = tf.Variable(tf.random_normal([1]), name='bias')
# 手写y = wx+b
Y_pred = tf.add(tf.multiply(X, W), b) 
# 定义损失函数mse
loss = tf.square(Y - Y_pred, name='loss') 
# 学习率
learning_rate = 0.01
# 优化器,就是tensorflow中梯度下降的策略
# 定义梯度下降,申明学习率和针对那个loss求最小化
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) 

4. 训练模型

# 去样本数量
n_samples = xs.shape[0]
init = tf.global_variables_initializer()
with tf.Session() as sess:
    # 记得初始化所有变量
    sess.run(init) 
    writer = tf.summary.FileWriter('../graphs/linear_reg', sess.graph)
    # 训练模型
    for i in range(50):
        #初始化损失函数
        total_loss = 0
        for x, y in zip(xs, ys):
            # 通过feed_dic把数据灌进去
            _, l = sess.run([optimizer, loss], feed_dict={X: x, Y:y}) #_是optimizer的返回,在这没有用就省略
            total_loss += l #统计每轮样本的损失
        print('Epoch {0}: {1}'.format(i, total_loss/n_samples)) #求损失平均
    # 关闭writer
    writer.close() 
    # 取出w和b的值
    W, b = sess.run([W, b]) 
Epoch 0: [0.48447946]
Epoch 1: [0.20947962]
Epoch 2: [0.19649307]
Epoch 3: [0.19527708]
Epoch 4: [0.19514856]
Epoch 5: [0.19513479]
Epoch 6: [0.19513334]
Epoch 7: [0.19513316]
Epoch 8: [0.19513315]
Epoch 9: [0.19513315]
Epoch 10: [0.19513315]
Epoch 11: [0.19513315]
Epoch 12: [0.19513315]
Epoch 13: [0.19513315]
Epoch 14: [0.19513315]
Epoch 15: [0.19513315]
Epoch 16: [0.19513315]
Epoch 17: [0.19513315]
Epoch 18: [0.19513315]
Epoch 19: [0.19513315]
Epoch 20: [0.19513315]
Epoch 21: [0.19513315]
Epoch 22: [0.19513315]
Epoch 23: [0.19513315]
Epoch 24: [0.19513315]
Epoch 25: [0.19513315]
Epoch 26: [0.19513315]
Epoch 27: [0.19513315]
Epoch 28: [0.19513315]
Epoch 29: [0.19513315]
Epoch 30: [0.19513315]
Epoch 31: [0.19513315]
Epoch 32: [0.19513315]
Epoch 33: [0.19513315]
Epoch 34: [0.19513315]
Epoch 35: [0.19513315]
Epoch 36: [0.19513315]
Epoch 37: [0.19513315]
Epoch 38: [0.19513315]
Epoch 39: [0.19513315]
Epoch 40: [0.19513315]
Epoch 41: [0.19513315]
Epoch 42: [0.19513315]
Epoch 43: [0.19513315]
Epoch 44: [0.19513315]
Epoch 45: [0.19513315]
Epoch 46: [0.19513315]
Epoch 47: [0.19513315]
Epoch 48: [0.19513315]
Epoch 49: [0.19513315]
print(W,b)
print("W:"+str(W[0]))
print("b:"+str(b[0]))
[0.23069778] [-0.12590201]
W:0.23069778
b:-0.12590201

5. 线性回归图

# 线性回归图
plt.plot(xs, ys, 'bo', label='Real data')
plt.plot(xs, xs * W + b, 'r', label='Predicted data')
plt.legend()
plt.show()

96269b6ce95c45d3a60a9638a97eca10.png

目录
相关文章
|
7天前
|
机器学习/深度学习 API 语音技术
|
3月前
|
机器学习/深度学习 Dart TensorFlow
TensorFlow Lite,ML Kit 和 Flutter 移动深度学习:6~11(5)
TensorFlow Lite,ML Kit 和 Flutter 移动深度学习:6~11(5)
|
1天前
|
机器学习/深度学习 运维 监控
TensorFlow分布式训练:加速深度学习模型训练
【4月更文挑战第17天】TensorFlow分布式训练加速深度学习模型训练,通过数据并行和模型并行利用多机器资源,减少训练时间。优化策略包括配置计算资源、优化数据划分和减少通信开销。实际应用需关注调试监控、系统稳定性和容错性,以应对分布式训练挑战。
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
Python中的深度学习:TensorFlow与PyTorch的选择与使用
Python中的深度学习:TensorFlow与PyTorch的选择与使用
|
2月前
|
机器学习/深度学习 数据可视化 TensorFlow
基于tensorflow深度学习的猫狗分类识别
基于tensorflow深度学习的猫狗分类识别
61 1
|
3月前
|
机器学习/深度学习 PyTorch TensorFlow
【TensorFlow】深度学习框架概述&TensorFlow环境配置
【1月更文挑战第26天】【TensorFlow】深度学习框架概述&TensorFlow环境配置
|
3月前
|
机器学习/深度学习 存储 编解码
TensorFlow Lite,ML Kit 和 Flutter 移动深度学习:6~11(4)
TensorFlow Lite,ML Kit 和 Flutter 移动深度学习:6~11(4)
|
9天前
|
机器学习/深度学习 监控 安全
智能化视野下的守卫者:基于深度学习的图像识别技术在智能监控领域的革新应用
【4月更文挑战第9天】 随着人工智能技术的飞速发展,深度学习已经成为了推动计算机视觉进步的重要力量。尤其在智能监控领域,基于深度学习的图像识别技术正逐步转变着传统监控系统的功能与效率。本文旨在探讨深度学习技术如何赋能智能监控,提高对场景理解的准确性,增强异常行为检测的能力,并讨论其在实际部署中所面临的挑战和解决方案。通过深入分析,我们揭示了深度学习在智能监控中的应用不仅优化了安全防范体系,也为城市管理和公共安全提供了有力的技术支持。
|
9天前
|
机器学习/深度学习 算法 数据处理
深度学习在图像识别中的创新应用
【4月更文挑战第9天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉领域进步的关键技术之一。特别是在图像识别任务中,深度学习模型已经展现出超越传统算法的性能。本文将深入探讨深度学习在图像识别领域的最新进展,包括卷积神经网络(CNN)的变体、数据增强技术以及迁移学习等策略。通过对这些技术的综合运用,我们能够实现对复杂图像数据的高效识别和分类,进一步拓展了深度学习在实际应用中的可能性。
12 1
|
9天前
|
机器学习/深度学习 人工智能 算法
深度学习在医学影像诊断中的应用与挑战
传统医学影像诊断一直是医学领域的重要组成部分,但其依赖于医生的经验和技能,存在着诊断准确性不高和效率低下的问题。近年来,随着深度学习技术的发展,越来越多的研究表明,深度学习在医学影像诊断中具有巨大的潜力。本文将探讨深度学习在医学影像诊断中的应用现状、挑战和未来发展趋势。
13 0