用深度学习检测冠心病:不依赖血管造影且成本下降25%

简介:
本文来自AI新媒体量子位(QbitAI)

冠心病是人类的一大杀手,全球每年将近900万人死于冠心病。在美国,每年有1200万到1300万人被确诊。心脏病极易摧毁生命的原因之一检测困难,尤其在女性身上。目前的检测方法大多依赖血管造影,造价高昂且侵略性强。

最近,个性化医疗技术公司HeartFlow用深度学习的方法找到了更好的解决方案。


替代检测

HeartFlow提供了一种不那么侵略性的替代检测法。它融合了传统的CT扫描、复杂的流体动力学知识和机器学习算法,构建出患者心脏的3D模型图,提供阻塞位置和血流量的具体信息,为医生提供详细参考。

这个方案意味着,将近60%的患者可以避免侵略性强的血管造影检测,检测费用也降低了25%。

心脏建模

建立心脏模型是复杂的巨大挑战。除了需要为每位患者构建精准的亚体素模型外,还需模仿血液在每个血管中的流动。在快节奏的急诊部,诊断时间是一个重要的考量点。

“当急诊室里的病人疑似冠心病症状时,他们需要快速诊断。”HeartFlow工程部高级副总裁Leo Grady说。

HeartFlow用深度学习的方法解决了这个痛点,即用新型血管特异性结构分析血流。

HeartFlow应用的计算机视觉算法通过理解CT扫描中的医学影像数据,分析并构建患者心脏和冠状动脉的个性化3D模型。

不过,生成出模型可不是终点,还需要修正和评测。受过训练的专业人员细致评估模型,判读生成的模型是否需要调整,保证成像数据模型的精度和准确性。因此,算法处理的图像越多,它们就越精确。

政府支持

目前,美国国家食品药品监督管理局已经批准了这一计划,它也得到了英国国家健康和临床研究所的支持。

“使用GPU加速的深度学习,可以帮助快速作出精确且个性化的决策,”Grady说。“这意味着更好的治疗结果,以及更少的医疗体系支出。”

【完】

本文作者:安妮 
原文发布时间:2017-07-08
相关文章
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
163 6
|
5月前
|
机器学习/深度学习 监控 TensorFlow
使用Python实现深度学习模型:智能农业病虫害检测与防治
使用Python实现深度学习模型:智能农业病虫害检测与防治
304 65
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能质量检测与控制
使用Python实现深度学习模型:智能质量检测与控制 【10月更文挑战第8天】
341 62
使用Python实现深度学习模型:智能质量检测与控制
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
使用Python实现智能食品质量检测的深度学习模型
使用Python实现智能食品质量检测的深度学习模型
193 1
|
2月前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
102 7
|
2月前
|
机器学习/深度学习 传感器 算法
行人闯红灯检测:基于计算机视觉与深度学习的智能交通解决方案
随着智能交通系统的发展,传统的人工交通违法判断已难以满足需求。本文介绍了一种基于计算机视觉与深度学习的行人闯红灯自动检测系统,涵盖信号灯状态检测、行人检测与跟踪、行为分析及违规判定与报警四大模块,旨在提升交通管理效率与安全性。
|
3月前
|
机器学习/深度学习 运维 监控
深度学习之异常检测
基于深度学习的异常检测是一项重要的研究领域,主要用于识别数据中的异常样本或行为。异常检测广泛应用于多个领域,如网络安全、金融欺诈检测、工业设备预测性维护、医疗诊断等。
266 2
|
3月前
|
机器学习/深度学习 传感器 数据采集
深度学习之设备异常检测与预测性维护
基于深度学习的设备异常检测与预测性维护是一项利用深度学习技术分析设备运行数据,实时检测设备运行过程中的异常情况,并预测未来可能的故障,以便提前进行维护,防止意外停机和生产中断。
156 1
|
4月前
|
机器学习/深度学习 并行计算 PyTorch
图像检测【YOLOv5】——深度学习
Anaconda的安装配置:(Anaconda是一个开源的Python发行版本,包括Conda、Python以及很多安装好的工具包,比如:numpy,pandas等,其中conda是一个开源包和环境管理器,可以用于在同一个电脑上安装不同版本的软件包,并且可以在不同环境之间切换,是深度学习的必备平台。) 一.Anaconda安装配置. 1.首先进入官网:https://repo.anaconda.com,选择View All Installers. 2.打开看到的界面是Anaconda的所以安装包版本,Anaconda3就代表是Python3版本,后面跟的是发行日期,我选择了最近的2022
86 27
|
4月前
|
机器学习/深度学习 数据采集 网络安全
使用Python实现深度学习模型:智能网络安全威胁检测
使用Python实现深度学习模型:智能网络安全威胁检测
366 5