【深度学习】实验12 使用PyTorch训练模型

简介: 【深度学习】实验12 使用PyTorch训练模型

使用PyTorch训练模型

PyTorch是一个基于Python的科学计算库,它是一个开源的机器学习框架,由Facebook公司于2016年开源。它提供了构建动态计算图的功能,可以更自然地使用Python语言编写深度神经网络的程序,具有易于使用、灵活、高效等特点,被广泛应用于深度学习任务中。


PyTorch的核心是动态计算图(Dynamic Computational Graph),这意味着计算图是在运行时动态生成的,而不是预先编译好的。这个特点使得PyTorch具有高度的灵活性,可以更加轻松地进行实验和调试。同时,它也有一个静态计算图模块,可以用于生产环境中,提高计算效率。


另外,PyTorch的另一个特点是它的张量计算。张量是PyTorch中的核心数据结构,类似于NumPy中的数组。PyTorch支持GPU加速,可以使用GPU进行张量计算,大大提高了计算效率。同时,它也支持自动求导功能,可以自动计算张量的梯度,使得深度学习的模型训练更加便捷。


PyTorch还提供了丰富的模型库,包括经典的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)和生成对抗网络(GAN),以及各种领域的预训练模型,如自然语言处理(NLP)和计算机视觉(CV),可以快速搭建和训练模型。


PyTorch也具有良好的社区支持。它的文档详细且易于理解,社区提供了大量的示例和教程,可以帮助用户更好地学习和使用PyTorch。同时,PyTorch还有一个活跃的开发团队,定期发布新的版本,修复bug和增加新的特性,保证了PyTorch的稳定性和可用性。


总的来说,PyTorch是一个强大、灵活、易于使用的机器学习框架,具有良好的社区支持和广泛的应用领域,能够满足不同用户的需求。随着人工智能的不断发展,PyTorch的应用将会更加广泛。

1. 线性回归类

import torch
import numpy as np
import matplotlib.pyplot as plt
class LinearRegression(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = torch.nn.Linear(1, 1)
        self.optimizer = torch.optim.SGD(self.parameters(), lr=0.01)
        self.loss_function = torch.nn.MSELoss()
    def forward(self, x):
        out = self.linear(x)
        return out
    def train(self, data, model_save_path='model.path'):
        x = data["x"]
        y = data["y"]
        for epoch in range(10000):
            prediction = self.forward(x)
            loss = self.loss_function(prediction, y)
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()
            if epoch % 100 == 0:
                print("epoch:{}, loss is:{}".format(epoch, loss.item()))
        torch.save(self.state_dict(), "linear.pth")
    def test(self, x, model_path="linear.pth"):
        x = data["x"]
        y = data["y"]
        self.load_state_dict(torch.load(model_path))
        prediction = self.forward(x)
        plt.scatter(x.numpy(), y.numpy(), c=x.numpy())
        plt.plot(x.numpy(), prediction.detach().numpy(), color="r")
        plt.show()

该Python代码实现了一个简单的线性回归模型,并进行了训练和测试。


首先,导入了PyTorch、NumPy和Matplotlib.pyplot库。


接下来,定义了一个名为LinearRegression的类,它是一个继承自torch.nn.Module的类,因此可以利用PyTorch的自动求导和优化功能。在该类的初始化方法中,定义了一个torch.nn.Linear对象,它表示一个全连接层,输入大小为1,输出大小为1;并定义了一个torch.optim.SGD对象,它表示随机梯度下降法的优化器,学习率为0.01;以及一个torch.nn.MSELoss对象,它表示均方误差损失函数。


接下来,定义了一个名为forward的方法,它表示前向传递过程,即对输入进行线性变换,得到输出。


然后,定义了一个名为train的方法,它接受一个数据字典和一个模型保存路径作为输入。该方法首先从数据字典中获取输入数据x和输出数据y,然后进行10000次迭代训练。在每次迭代中,先将输入数据x送入模型中得到预测输出prediction,然后计算预测输出和真实输出之间的均方误差损失loss,并进行反向传播和参数优化。每100次迭代打印一次损失值。最后将模型参数保存到指定的文件路径中。


最后,定义了一个名为test的方法,它接受一个输入数据x和一个模型保存路径作为输入。该方法首先从文件中加载训练好的模型参数,然后将输入数据x送入模型中得到预测输出prediction,并将预测输出和真实输出以及输入数据可视化展示出来。


总之,这段代码实现了一个简单的线性回归模型,并可以通过train方法进行训练,通过test方法进行测试和可视化展示。


2. 创建数据集

def create_linear_data(nums_data, if_plot=False):
    x = torch.linspace(0, 1, nums_data)
    x = torch.unsqueeze(x, dim = 1)
    k = 2
    y = k * x + torch.rand(x.size())
    if if_plot:
        plt.scatter(x.numpy(), y.numpy(), c=x.numpy())
        plt.show()
    data = {"x":x, "y":y}
    return data
data = create_linear_data(300, if_plot=True)

3. 训练模型

model = LinearRegression()
model.train(data)
   epoch:0, loss is:3.8653182983398438
   epoch:100, loss is:0.31251025199890137
   epoch:200, loss is:0.2438090741634369
   epoch:300, loss is:0.20671892166137695
   epoch:400, loss is:0.17835141718387604
   epoch:500, loss is:0.15658551454544067
   epoch:600, loss is:0.13988454639911652
   epoch:700, loss is:0.12706983089447021
   epoch:800, loss is:0.11723710596561432
   epoch:900, loss is:0.10969242453575134
   epoch:1000, loss is:0.10390334576368332
   epoch:1100, loss is:0.09946136921644211
   epoch:1200, loss is:0.09605306386947632
   epoch:1300, loss is:0.09343785047531128
   epoch:1400, loss is:0.09143117070198059
   epoch:1500, loss is:0.0898914709687233
   epoch:1600, loss is:0.08871004730463028
   epoch:1700, loss is:0.08780352771282196
   epoch:1800, loss is:0.08710794895887375
   epoch:1900, loss is:0.08657423406839371
   epoch:2000, loss is:0.08616471290588379
   epoch:2100, loss is:0.08585048466920853
   epoch:2200, loss is:0.08560937643051147
   epoch:2300, loss is:0.08542437106370926
   epoch:2400, loss is:0.08528240770101547
   epoch:2500, loss is:0.08517350256443024
   epoch:2600, loss is:0.08508992940187454
   epoch:2700, loss is:0.08502580225467682
   epoch:2800, loss is:0.08497659116983414
   epoch:2900, loss is:0.08493883907794952
   epoch:3000, loss is:0.08490986377000809
   epoch:3100, loss is:0.08488764613866806
   epoch:3200, loss is:0.08487057685852051
   epoch:3300, loss is:0.08485749363899231
   epoch:3400, loss is:0.08484745025634766
   epoch:3500, loss is:0.08483975380659103
   epoch:3600, loss is:0.08483383059501648
   epoch:3700, loss is:0.08482930809259415
   epoch:3800, loss is:0.08482582122087479
   epoch:3900, loss is:0.08482315391302109
   epoch:4000, loss is:0.08482109755277634
   epoch:4100, loss is:0.08481952548027039
   epoch:4200, loss is:0.08481831848621368
   epoch:4300, loss is:0.08481740206480026
   epoch:4400, loss is:0.08481667935848236
   epoch:4500, loss is:0.08481614291667938
   epoch:4600, loss is:0.08481571823358536
   epoch:4700, loss is:0.08481539785861969
   epoch:4800, loss is:0.08481515198945999
   epoch:4900, loss is:0.08481497317552567
   epoch:5000, loss is:0.08481481671333313
   epoch:5100, loss is:0.08481471240520477
   epoch:5200, loss is:0.08481462299823761
   epoch:5300, loss is:0.08481455594301224
   epoch:5400, loss is:0.08481451123952866
   epoch:5500, loss is:0.08481448143720627
   epoch:5600, loss is:0.08481443673372269
   epoch:5700, loss is:0.08481442183256149
   epoch:5800, loss is:0.0848143994808197
   epoch:5900, loss is:0.0848143920302391
   epoch:6000, loss is:0.08481437712907791
   epoch:6100, loss is:0.08481436222791672
   epoch:6200, loss is:0.08481435477733612
   epoch:6300, loss is:0.08481435477733612
   epoch:6400, loss is:0.08481435477733612
   epoch:6500, loss is:0.08481435477733612
   epoch:6600, loss is:0.08481435477733612
   epoch:6700, loss is:0.08481435477733612
   epoch:6800, loss is:0.08481434732675552
   epoch:6900, loss is:0.08481435477733612
   epoch:7000, loss is:0.08481433987617493
   epoch:7100, loss is:0.08481435477733612
   epoch:7200, loss is:0.08481433987617493
   epoch:7300, loss is:0.08481433987617493
   epoch:7400, loss is:0.08481434732675552
   epoch:7500, loss is:0.08481434732675552
   epoch:7600, loss is:0.08481434732675552
   epoch:7700, loss is:0.08481434732675552
   epoch:7800, loss is:0.08481434732675552
   epoch:7900, loss is:0.08481434732675552
   epoch:8000, loss is:0.08481434732675552
   epoch:8100, loss is:0.08481434732675552
   epoch:8200, loss is:0.08481434732675552
   epoch:8300, loss is:0.08481434732675552
   epoch:8400, loss is:0.08481434732675552
   epoch:8500, loss is:0.08481434732675552
   epoch:8600, loss is:0.08481434732675552
   epoch:8700, loss is:0.08481434732675552
   epoch:8800, loss is:0.08481434732675552
   epoch:8900, loss is:0.08481434732675552
   epoch:9000, loss is:0.08481434732675552
   epoch:9100, loss is:0.08481434732675552
   epoch:9200, loss is:0.08481434732675552
   epoch:9300, loss is:0.08481434732675552
   epoch:9400, loss is:0.08481434732675552
   epoch:9500, loss is:0.08481434732675552
   epoch:9600, loss is:0.08481434732675552
   epoch:9700, loss is:0.08481434732675552
   epoch:9800, loss is:0.08481434732675552
   epoch:9900, loss is:0.08481434732675552
model.test(data)

4. 测试模型

目录
相关文章
|
19天前
|
存储 人工智能 PyTorch
基于PyTorch/XLA的高效分布式训练框架
基于PyTorch/XLA的高效分布式训练框架
27 2
|
1天前
|
机器学习/深度学习 算法 TensorFlow
TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)
TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)
|
3天前
|
机器学习/深度学习 监控 数据可视化
【日常聊聊】解决深度学习模型挑战:解释性与鲁棒性的平衡
【日常聊聊】解决深度学习模型挑战:解释性与鲁棒性的平衡
|
12天前
|
机器学习/深度学习 算法 PyTorch
PyTorch模型优化与调优:正则化、批归一化等技巧
【4月更文挑战第18天】本文探讨了PyTorch中提升模型性能的优化技巧,包括正则化(L1/L2正则化、Dropout)、批归一化、学习率调整策略和模型架构优化。正则化防止过拟合,Dropout提高泛化能力;批归一化加速训练并提升性能;学习率调整策略动态优化训练效果;模型架构优化涉及网络结构和参数的调整。这些方法有助于实现更高效的深度学习模型。
|
12天前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch与迁移学习:利用预训练模型提升性能
【4月更文挑战第18天】PyTorch支持迁移学习,助力提升深度学习性能。预训练模型(如ResNet、VGG)在大规模数据集(如ImageNet)训练后,可在新任务中加速训练,提高准确率。通过选择模型、加载预训练权重、修改结构和微调,可适应不同任务需求。迁移学习节省资源,但也需考虑源任务与目标任务的相似度及超参数选择。实践案例显示,预训练模型能有效提升小数据集上的图像分类任务性能。未来,迁移学习将继续在深度学习领域发挥重要作用。
|
12天前
|
机器学习/深度学习 PyTorch 测试技术
PyTorch 深度学习(GPT 重译)(四)(1)
PyTorch 深度学习(GPT 重译)(四)
29 2
|
12天前
|
机器学习/深度学习 PyTorch API
PyTorch 深度学习(GPT 重译)(三)(4)
PyTorch 深度学习(GPT 重译)(三)
40 3
|
12天前
|
机器学习/深度学习 存储 PyTorch
PyTorch 深度学习(GPT 重译)(三)(3)
PyTorch 深度学习(GPT 重译)(三)
29 2
|
12天前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 深度学习(GPT 重译)(二)(3)
PyTorch 深度学习(GPT 重译)(二)
28 1
|
12天前
|
机器学习/深度学习 算法 PyTorch
PyTorch 深度学习(GPT 重译)(二)(2)
PyTorch 深度学习(GPT 重译)(二)
35 2