动物识别系统python+Django网页界面+TensorFlow算法模型+数据集训练

简介: 动物识别系统python+Django网页界面+TensorFlow算法模型+数据集训练

一、简介

动物识别系统。基于Python+TensorFlow+Django网页框架+ResNet50算法模型实现
实现步骤如下:

  • 收集多种动物的图片数据集,并整理归类
  • 然后使用TensorFlow搭建ResNet50算法模型网络对数据集进行多次迭代训练
  • 最后得到一个精度较高的H5模型文件
  • 基于训练好的模型,使用Django开发一个网页界面平台,实现用户上传一张图片识别其名称
  • 用户上传信息和识别信息均保存在数据库中

二、效果图片

image-20230716192115159.png
img_10_12_16_16_33.jpg
img_10_12_16_17_04.jpg

三、演示视频 and 代码

视频+代码+介绍:https://s7bacwcxv4.feishu.cn/wiki/K2oZwERjfidCPqkaZHMcj0OKnld

四、基于TensorFlow搭建ResNet50算法模型案例

ResNet(残差网络)是深度学习中常用的一种神经网络结构,它通过引入残差模块来缓解深层网络的梯度消失问题。在本文中,我们将使用TensorFlow来搭建ResNet50,并使用此模型进行图像分类。

1. ResNet50的结构简介

ResNet的核心思想是使用“跳跃连接”(或称为“短路连接”)来避免深层神经网络的梯度消失问题。具体来说,如果我们设定一个输入为x的层的输出为H(x),则在ResNet中,我们让层的输出为H(x) + x。这意味着每个层学习的是与输入x之间的残差函数,而不是直接的映射函数。
ResNet50包含50层,其中包括1层卷积、4个建筑块(每个建筑块包含多个残差块)和1层全连接层。

2. 使用TensorFlow搭建ResNet50

首先,确保安装了必要的库:

pip install tensorflow

定义残差块

import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, Add

def identity_block(input_tensor, kernel_size, filters, stage, block):
    filters1, filters2, filters3 = filters

    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    # 主路径的第一部分
    x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)
    x = BatchNormalization(axis=3, name=bn_name_base + '2a')(x)
    x = Activation('relu')(x)

    # 主路径的第二部分
    x = Conv2D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x)
    x = BatchNormalization(axis=3, name=bn_name_base + '2b')(x)
    x = Activation('relu')(x)

    # 主路径的第三部分
    x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
    x = BatchNormalization(axis=3, name=bn_name_base + '2c')(x)

    # 最后将短路连接与主路径相加,再通过ReLU激活函数
    x = Add()([x, input_tensor])
    x = Activation('relu')(x)

    return x

搭建ResNet50模型

from tensorflow.keras.layers import ZeroPadding2D, MaxPooling2D, Flatten, Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model

def ResNet50(input_shape, classes):
    # 定义输入
    img_input = Input(shape=input_shape)

    # 前期处理
    x = ZeroPadding2D((3, 3))(img_input)
    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
    x = BatchNormalization(axis=3, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    # 构建残差块
    # ...

    # 全连接层
    x = GlobalAveragePooling2D()(x)
    x = Flatten()(x)
    x = Dense(classes, activation='softmax', name='fc' + str(classes))(x)

    # 创建模型
    model = Model(img_input, x, name='resnet50')

    return model

model = ResNet50(input_shape=(224, 224, 3), classes=1000)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

请注意,上述代码是一个简化的版本,并未包含ResNet50的所有残差块

目录
相关文章
|
7天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
101 66
|
4天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
9天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
40 5
|
9天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
42 0
|
18天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
206 55
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
110 5
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
94 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
105 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
102 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
103 0