【数据结构】排序算法(一)—>插入排序、希尔排序、选择排序、堆排序

简介: 【数据结构】排序算法(一)—>插入排序、希尔排序、选择排序、堆排序

1.直接插入排序

直接插入排序的思想就是从左到右进行遍历,在遍历过程中将当前的元素插入到前面(已经有序)合适的位置,直到遍历完成。

直接插入排序的特性:

  • 元素集合越接近有序,直接插入排序算法时间效率越高;
  • 时间复杂度:O(N^2);
  • 空间复杂度:O(1);
  • 稳定性:稳定。

排序的稳定性:指的是保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。

代码实现:

// 插入排序
void InsertSort(int* a, int n)
{
  for (int i = 0; i < n-1; i++)
  {
    int end = i;
    int tmp = a[end + 1];//保存待插入的值
    while (end >= 0)
    {
      if (tmp < a[end])
      {
        a[end + 1] = a[end];//向后覆盖
      }
      else//因为此时前面已经是有序序列,如果tmp>当前值,证明比前面都大,所以break跳出即可
      {
        break;
      }
      end--;
    }
    a[end+1]= tmp;
  }
}

2.希尔排序

希尔排序与直接插入排序同属插入排序方法,也就是说希尔排序也是靠向前插入的思路进行的。

不同的是,希尔排序先进行预排序,将待排序序列调整的接近有序后,再进行一次直接插入排序。

希尔排序利用了插入排序的特性:待排序序列越接近有序,插入排序时间效率越高。

那么如何进行预排序呢?

希尔排序将待排序序列分组,假设定义一个变量 gap ,那么间隔gap的数据我们分为一组,如图:

预排序阶段:我们以分组情况为基础,每组内部进行直接插入排序,每完成一轮,gap=gap/3-1。


注意:预排序阶段的边界设计很多可以参照直接插入排序,就是将1改为了gap而已,不理解时可以代入直接插入排序进行理解。


直接插入排序阶段:直到gap的值为1的时候,我们发现此时就是直接插入排序了,经过这轮排序就能得到最终的有序序列。


希尔排序的特性总结:

希尔排序是对直接插入排序的优化。

当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。

希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定。大致为O(N^1.25)到O(1.6*N^1.25)。

稳定性:不稳定


代码实现:

// 希尔排序
void ShellSort(int* a, int n)
{
  int gap = n;
  while (gap > 1)
  {
    gap = gap / 3 + 1;//gap递减普遍取这种,也有取gap=gap/2的
    for (int i = 0; i < n - gap; i++)
    {
      int end = i;
      int tmp = a[end + gap];
      while (end >= 0)
      {
        if (tmp < a[end])
        {
          a[end + gap] = a[end];
                    end -= gap;
        }
        else
        {
          break;
        }
      }
      a[end + gap] = tmp;
    }
  }
}

3.直接选择排序

选择排序的思想是每遍历一遍选出最小的值,放到最开始的位置。

我们对该思想优化,每次遍历选出最大值和最小值,分别放到两边。

直接选择排序的特性:

  • 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
  • 时间复杂度:O(N^2)
  • 空间复杂度:O(1)
  • 稳定性:不稳定

代码实现:

// 选择排序
void SelectSort(int* a, int n)
{
  int left = 0;
  int right = n - 1;
  while (right > left)
  {
    int maxi = left;
    int mini = left;
    for (int i = left+1; i <=right ; i++)
    {
      if (a[i] > a[maxi])
      {
        maxi = i;
      }
      if (a[i] < a[mini])
      {
        mini = i;
      }
    }
    swap(&a[left], &a[mini]);
    if (maxi == left)//假设max被换走了,恢复一下
    {
      maxi = mini;
    }
    swap(&a[right], &a[maxi]);
    right--;
    left++;
  }
}

4.堆排序

堆排序首先要介绍的是向下调整算法。

向下调整算法的前提是左右子树是堆。

以小堆为例:

1.给定向下调整的起点(双亲节点下标)和节点总数,根据起点下标计算孩子节点下标。

注意:向下调整时,若有两个孩子节点,则需要确保调整的是较大的孩子节点。

2.比较孩子节点与双亲节点数值大小,若孩子节点小于双亲节点,则交换两者,并将双亲节点的下标更新为之前的孩子节点下标,根据最新的双亲节点下标重新计算孩子节点下标,重复这一过程直到孩子节点超出节点总数。

对于堆排序来说:

以升序为例:

首先构建大堆(推荐使用向下调整),此时堆顶元素一定为最大值,然后将堆顶元素与最后一个节点交换,此时最大值就放到了整个数组的最后面,然后除了最后一个值以外,其他的数据再向下调整,调整完成后堆顶元素为次大值,再与数组倒数第二个位置的值交换,这样依此往复就得到了升序数组。


注意:升序建大堆,降序建小堆。

堆排序的特性总结:

  • 堆排序擅于处理庞大数据。
  • 时间复杂度:O(N*logN)
  • 空间复杂度:O(1)
  • 稳定性:不稳定

代码实现:

// 堆排序
void AdjustDown(int* a, int n, int parent)
{
  int child = parent * 2 + 1;
  while (child < n)
  {
    // 找出小的那个孩子
    if (child + 1 < n && a[child + 1] > a[child])
    {
      ++child;
    }
    if (a[child] > a[parent])
    {
      Swap(&a[child], &a[parent]);
      // 继续往下调整
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
void HeapSort(int* a, int n)
{
  // 向下调整建堆
  // O(N)
  for (int i = (n - 1 - 1) / 2; i >= 0; i--)
  {
    AdjustDown(a, n, i);
  }
  // O(N*logN)
  int end = n - 1;
  while (end > 0)
  {
    Swap(&a[0], &a[end]);
    AdjustDown(a, end, 0);
    --end;
  }
}
目录
相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
70 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
1月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
33 4
|
1月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
1月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
21 0
|
19天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
97 9
|
10天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
19 1
|
12天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
15天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
17天前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
46 4
|
1月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
31 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
下一篇
无影云桌面