【数据结构】排序算法(一)—>插入排序、希尔排序、选择排序、堆排序

简介: 【数据结构】排序算法(一)—>插入排序、希尔排序、选择排序、堆排序

1.直接插入排序

直接插入排序的思想就是从左到右进行遍历,在遍历过程中将当前的元素插入到前面(已经有序)合适的位置,直到遍历完成。

直接插入排序的特性:

  • 元素集合越接近有序,直接插入排序算法时间效率越高;
  • 时间复杂度:O(N^2);
  • 空间复杂度:O(1);
  • 稳定性:稳定。

排序的稳定性:指的是保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。

代码实现:

// 插入排序
void InsertSort(int* a, int n)
{
  for (int i = 0; i < n-1; i++)
  {
    int end = i;
    int tmp = a[end + 1];//保存待插入的值
    while (end >= 0)
    {
      if (tmp < a[end])
      {
        a[end + 1] = a[end];//向后覆盖
      }
      else//因为此时前面已经是有序序列,如果tmp>当前值,证明比前面都大,所以break跳出即可
      {
        break;
      }
      end--;
    }
    a[end+1]= tmp;
  }
}

2.希尔排序

希尔排序与直接插入排序同属插入排序方法,也就是说希尔排序也是靠向前插入的思路进行的。

不同的是,希尔排序先进行预排序,将待排序序列调整的接近有序后,再进行一次直接插入排序。

希尔排序利用了插入排序的特性:待排序序列越接近有序,插入排序时间效率越高。

那么如何进行预排序呢?

希尔排序将待排序序列分组,假设定义一个变量 gap ,那么间隔gap的数据我们分为一组,如图:

预排序阶段:我们以分组情况为基础,每组内部进行直接插入排序,每完成一轮,gap=gap/3-1。


注意:预排序阶段的边界设计很多可以参照直接插入排序,就是将1改为了gap而已,不理解时可以代入直接插入排序进行理解。


直接插入排序阶段:直到gap的值为1的时候,我们发现此时就是直接插入排序了,经过这轮排序就能得到最终的有序序列。


希尔排序的特性总结:

希尔排序是对直接插入排序的优化。

当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。

希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定。大致为O(N^1.25)到O(1.6*N^1.25)。

稳定性:不稳定


代码实现:

// 希尔排序
void ShellSort(int* a, int n)
{
  int gap = n;
  while (gap > 1)
  {
    gap = gap / 3 + 1;//gap递减普遍取这种,也有取gap=gap/2的
    for (int i = 0; i < n - gap; i++)
    {
      int end = i;
      int tmp = a[end + gap];
      while (end >= 0)
      {
        if (tmp < a[end])
        {
          a[end + gap] = a[end];
                    end -= gap;
        }
        else
        {
          break;
        }
      }
      a[end + gap] = tmp;
    }
  }
}

3.直接选择排序

选择排序的思想是每遍历一遍选出最小的值,放到最开始的位置。

我们对该思想优化,每次遍历选出最大值和最小值,分别放到两边。

直接选择排序的特性:

  • 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
  • 时间复杂度:O(N^2)
  • 空间复杂度:O(1)
  • 稳定性:不稳定

代码实现:

// 选择排序
void SelectSort(int* a, int n)
{
  int left = 0;
  int right = n - 1;
  while (right > left)
  {
    int maxi = left;
    int mini = left;
    for (int i = left+1; i <=right ; i++)
    {
      if (a[i] > a[maxi])
      {
        maxi = i;
      }
      if (a[i] < a[mini])
      {
        mini = i;
      }
    }
    swap(&a[left], &a[mini]);
    if (maxi == left)//假设max被换走了,恢复一下
    {
      maxi = mini;
    }
    swap(&a[right], &a[maxi]);
    right--;
    left++;
  }
}

4.堆排序

堆排序首先要介绍的是向下调整算法。

向下调整算法的前提是左右子树是堆。

以小堆为例:

1.给定向下调整的起点(双亲节点下标)和节点总数,根据起点下标计算孩子节点下标。

注意:向下调整时,若有两个孩子节点,则需要确保调整的是较大的孩子节点。

2.比较孩子节点与双亲节点数值大小,若孩子节点小于双亲节点,则交换两者,并将双亲节点的下标更新为之前的孩子节点下标,根据最新的双亲节点下标重新计算孩子节点下标,重复这一过程直到孩子节点超出节点总数。

对于堆排序来说:

以升序为例:

首先构建大堆(推荐使用向下调整),此时堆顶元素一定为最大值,然后将堆顶元素与最后一个节点交换,此时最大值就放到了整个数组的最后面,然后除了最后一个值以外,其他的数据再向下调整,调整完成后堆顶元素为次大值,再与数组倒数第二个位置的值交换,这样依此往复就得到了升序数组。


注意:升序建大堆,降序建小堆。

堆排序的特性总结:

  • 堆排序擅于处理庞大数据。
  • 时间复杂度:O(N*logN)
  • 空间复杂度:O(1)
  • 稳定性:不稳定

代码实现:

// 堆排序
void AdjustDown(int* a, int n, int parent)
{
  int child = parent * 2 + 1;
  while (child < n)
  {
    // 找出小的那个孩子
    if (child + 1 < n && a[child + 1] > a[child])
    {
      ++child;
    }
    if (a[child] > a[parent])
    {
      Swap(&a[child], &a[parent]);
      // 继续往下调整
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
void HeapSort(int* a, int n)
{
  // 向下调整建堆
  // O(N)
  for (int i = (n - 1 - 1) / 2; i >= 0; i--)
  {
    AdjustDown(a, n, i);
  }
  // O(N*logN)
  int end = n - 1;
  while (end > 0)
  {
    Swap(&a[0], &a[end]);
    AdjustDown(a, end, 0);
    --end;
  }
}
目录
相关文章
|
2月前
|
搜索推荐 算法 数据处理
【C++数据结构——内排序】希尔排序(头歌实践教学平台习题)【合集】
本文介绍了希尔排序算法的实现及相关知识。主要内容包括: - **任务描述**:实现希尔排序算法。 - **相关知识**: - 排序算法基础概念,如稳定性。 - 插入排序的基本思想和步骤。 - 间隔序列(增量序列)的概念及其在希尔排序中的应用。 - 算法的时间复杂度和空间复杂度分析。 - 代码实现技巧,如循环嵌套和索引计算。 - **测试说明**:提供了测试输入和输出示例,帮助验证代码正确性。 - **我的通关代码**:给出了完整的C++代码实现。 - **测试结果**:展示了代码运行的测试结果。 通过这些内容,读者可以全面了解希尔排序的原理和实现方法。
63 10
|
5月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
89 1
|
5月前
|
算法 搜索推荐
数据结构与算法学习十八:堆排序
这篇文章介绍了堆排序是一种通过构建堆数据结构来实现的高效排序算法,具有平均和最坏时间复杂度为O(nlogn)的特点。
112 0
数据结构与算法学习十八:堆排序
|
5月前
|
算法 搜索推荐
数据结构与算法学习十一:冒泡排序、选择排序、插入排序
本文介绍了冒泡排序、选择排序和插入排序三种基础排序算法的原理、实现代码和测试结果。
46 0
数据结构与算法学习十一:冒泡排序、选择排序、插入排序
|
7月前
|
搜索推荐 算法
【初阶数据结构篇】插入、希尔、选择、堆排序介绍(上篇)
堆排序(Heapsort)是指利⽤堆积树(堆)这种数据结构所设计的⼀种排序算法,它是选择排序的⼀ 种。它是通过堆来进⾏选择数据。需要注意的是排升序要建⼤堆,排降序建⼩堆。
37 0
|
7月前
|
算法
【初阶数据结构篇】堆的应用(堆排序与Top-K问题)
即求数据结合中前K个最⼤的元素或者最⼩的元素,⼀般情况下数据量都⽐较⼤。
78 0
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
2天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
2天前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
|
3天前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。