BES-LSSVM分类预测 | 秃鹰搜索优化最小二乘支持向量机分类预测

简介: BES-LSSVM分类预测 | 秃鹰搜索优化最小二乘支持向量机分类预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在机器学习领域,支持向量机(Support Vector Machines,SVM)是一种常用的分类算法。它通过在特征空间中构建一个最优超平面来实现数据分类。然而,传统的SVM算法在处理大规模数据集时存在一些问题,比如计算复杂度较高、内存消耗大等。为了解决这些问题,研究者们提出了一种基于最小二乘支持向量机(Least Squares Support Vector Machines,LSSVM)的改进算法,即BES-LSSVM。

BES-LSSVM算法是一种基于秃鹰算法(Bald Eagle Strategy)优化的LSSVM算法。秃鹰算法是一种模拟秃鹰捕食行为的优化算法,它通过模拟秃鹰的搜寻和捕食策略来寻找最优解。BES-LSSVM算法通过应用秃鹰算法来优化LSSVM的参数,从而提高分类性能。

BES-LSSVM算法的核心思想是通过优化LSSVM的超参数来提高分类准确性。LSSVM算法的超参数包括正则化参数和核函数参数,它们的选择对于算法的性能至关重要。传统的方法通常是通过交叉验证来选择最优的超参数,但这种方法计算复杂度较高且耗时。BES-LSSVM算法通过应用秃鹰算法来自动选择最优的超参数,从而减少了计算复杂度和时间消耗。

BES-LSSVM算法的具体步骤如下:

  1. 初始化一群秃鹰,并随机生成初始解。
  2. 根据当前解计算适应度值,并选择适应度最高的秃鹰作为当前最优解。
  3. 根据当前最优解更新其他秃鹰的位置,并计算新的适应度值。
  4. 重复步骤2和步骤3,直到达到停止条件(如迭代次数达到设定值)。
  5. 返回最优解作为LSSVM的超参数。

通过BES-LSSVM算法优化后的LSSVM模型在数据分类任务中具有较高的准确性和鲁棒性。与传统的SVM算法相比,BES-LSSVM算法能够更好地处理大规模数据集,并且在计算复杂度和时间消耗上更加高效。因此,BES-LSSVM算法在实际应用中具有广泛的潜力。

总结起来,BES-LSSVM算法是一种基于秃鹰算法优化的最小二乘支持向量机算法,用于实现数据分类任务。它通过优化LSSVM的超参数来提高分类准确性,并且在处理大规模数据集时具有较高的效率。未来,我们可以进一步研究BES-LSSVM算法在其他机器学习任务中的应用,并探索其更多的优化潜力。

📣 部分代码

function [model,Yt] = prelssvm(model,Xt,Yt)% Preprocessing of the LS-SVM%% These functions should only be called by trainlssvm or by% simlssvm. At first the preprocessing assigns a label to each in-% and output component (c for continuous, a for categorical or b% for binary variables). According to this label each dimension is rescaled:% %     * continuous: zero mean and unit variance%     * categorical: no preprocessing%     * binary: labels -1 and +1% % Full syntax (only using the object oriented interface):% % >> model   = prelssvm(model)% >> Xp = prelssvm(model, Xt)% >> [empty, Yp] = prelssvm(model, [], Yt)% >> [Xp, Yp] = prelssvm(model, Xt, Yt)% %       Outputs    %         model : Preprocessed object oriented representation of the LS-SVM model%         Xp    : Nt x d matrix with the preprocessed inputs of the test data%         Yp    : Nt x d matrix with the preprocessed outputs of the test data%       Inputs    %         model : Object oriented representation of the LS-SVM model%         Xt    : Nt x d matrix with the inputs of the test data to preprocess%         Yt    : Nt x d matrix with the outputs of the test data to preprocess% % % See also:%   postlssvm, trainlssvm% Copyright (c) 2011,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.be/sista/lssvmlabif model.preprocess(1)~='p', % no 'preprocessing  if nargin>=2, model = Xt;  end   returnend% % what to do% if model.preprocess(1)=='p',   eval('if model.prestatus(1)==''c'',model.prestatus=''unschemed'';end','model.prestatus=''unschemed'';');end  if nargin==1, % only model rescaling      %  % if UNSCHEMED, redefine a rescaling  %  if model.prestatus(1)=='u',% 'unschemed'    ffx =[];            for i=1:model.x_dim,      eval('ffx = [ffx model.pre_xscheme(i)];',...     'ffx = [ffx signal_type(model.xtrain(:,i),inf)];');    end    model.pre_xscheme = ffx;       ff = [];    for i=1:model.y_dim,      eval('ff = [ff model.pre_yscheme(i)];',...     'ff = [ff signal_type(model.ytrain(:,i),model.type)];');    end    model.pre_yscheme = ff;    model.prestatus='schemed';  end    %  % execute rescaling as defined if not yet CODED  %  if model.prestatus(1)=='s',% 'schemed'      model=premodel(model);     model.prestatus = 'ok';  end    %  % rescaling of the to simulate inputs  %elseif model.preprocess(1)=='p'  if model.prestatus(1)=='o',%'ok'     eval('Yt;','Yt=[];');    [model,Yt] = premodel(model,Xt,Yt);  else     warning('model rescaling inconsistent..redo ''model=prelssvm(model);''..');  endendfunction [type,ss] = signal_type(signal,type)%% determine the type of the signal,% binary classifier ('b'), categorical classifier ('a'), or continuous% signal ('c')%%ss = sort(signal);dif = sum(ss(2:end)~=ss(1:end-1))+1;% binaryif dif==2,  type = 'b';% categoricalelseif dif<sqrt(length(signal)) || type(1)== 'c',  type='a';% continuelse  type ='c';end  %% effective rescaling%function [model,Yt] = premodel(model,Xt,Yt)%%%if nargin==1,  for i=1:model.x_dim,    % CONTINUOUS VARIABLE:     if model.pre_xscheme(i)=='c',      model.pre_xmean(i)=mean(model.xtrain(:,i));      model.pre_xstd(i) = std(model.xtrain(:,i));      model.xtrain(:,i) = pre_zmuv(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i));      % CATEGORICAL VARIBALE:     elseif model.pre_xscheme(i)=='a',      model.pre_xmean(i)= 0;      model.pre_xstd(i) = 0;      model.xtrain(:,i) = pre_cat(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i));      % BINARY VARIBALE:     elseif model.pre_xscheme(i)=='b',            model.pre_xmean(i) = min(model.xtrain(:,i));      model.pre_xstd(i) = max(model.xtrain(:,i));      model.xtrain(:,i) = pre_bin(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i));    end    end    for i=1:model.y_dim,    % CONTINUOUS VARIABLE:     if model.pre_yscheme(i)=='c',      model.pre_ymean(i)=mean(model.ytrain(:,i),1);      model.pre_ystd(i) = std(model.ytrain(:,i),1);      model.ytrain(:,i) = pre_zmuv(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i));    % CATEGORICAL VARIBALE:     elseif model.pre_yscheme(i)=='a',            model.pre_ymean(i)=0;      model.pre_ystd(i) =0;      model.ytrain(:,i) = pre_cat(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i));    % BINARY VARIBALE:     elseif model.pre_yscheme(i)=='b',            model.pre_ymean(i) = min(model.ytrain(:,i));      model.pre_ystd(i) = max(model.ytrain(:,i));      model.ytrain(:,i) = pre_bin(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i));    end    endelse %if nargin>1, % testdata Xt,   if ~isempty(Xt),    if size(Xt,2)~=model.x_dim, warning('dimensions of Xt not compatible with dimensions of support vectors...');end    for i=1:model.x_dim,      % CONTINUOUS VARIABLE:       if model.pre_xscheme(i)=='c',  Xt(:,i) = pre_zmuv(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i));      % CATEGORICAL VARIBALE:       elseif model.pre_xscheme(i)=='a',  Xt(:,i) = pre_cat(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i));      % BINARY VARIBALE:       elseif model.pre_xscheme(i)=='b',        Xt(:,i) = pre_bin(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i));      end      end  end    if nargin>2 & ~isempty(Yt),    if size(Yt,2)~=model.y_dim, warning('dimensions of Yt not compatible with dimensions of training output...');end    for i=1:model.y_dim,      % CONTINUOUS VARIABLE:       if model.pre_yscheme(i)=='c',  Yt(:,i) = pre_zmuv(Yt(:,i),model.pre_ymean(i), model.pre_ystd(i));      % CATEGORICAL VARIBALE:       elseif model.pre_yscheme(i)=='a',        Yt(:,i) = pre_cat(Yt(:,i),model.pre_ymean(i),model.pre_ystd(i));      % BINARY VARIBALE:       elseif model.pre_yscheme(i)=='b',        Yt(:,i) = pre_bin(Yt(:,i),model.pre_ymean(i),model.pre_ystd(i));      end    end  end    % assign output  model=Xt;endfunction X = pre_zmuv(X,mean,var)%% preprocessing a continuous signal; rescaling to zero mean and unit% variance % 'c'%X = (X-mean)./var;function X = pre_cat(X,mean,range)%% preprocessing a categorical signal;% 'a'%X=X;function X = pre_bin(X,min,max)%% preprocessing a binary signal;% 'b'%if ~sum(isnan(X)) >= 1 %--> OneVsOne encoding    n = (X==min);    p = not(n);    X=-1.*(n)+p;end

⛳️ 运行结果

🔗 参考文献

[1] 孙峰超.基于最小二乘支持向量机的非线性预测控制[D].中国石油大学[2023-09-28].DOI:10.7666/d.y1709445.

[2] 杨钊,路超凡,刘安黎.基于PSO-LSSVM算法的表面粗糙度预测模型与应用[J].机床与液压, 2021, 49(6):5.

[3] 刘云,易松.基于双参数最小二乘支持向量机(TPA-LSSVM)的风电时间序列预测模型的优化研究[J].北京化工大学学报:自然科学版, 2019, 46(2):6.DOI:CNKI:SUN:BJHY.0.2019-02-015.

[4] 殷樾.基于粒子群算法最小二乘支持向量机的日前光伏功率预测[J].分布式能源, 2021, 6(2):7.DOI:10.16513/j.2096-2185.DE.2106019.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合







相关文章
|
机器学习/深度学习 传感器 算法
POA-LSSVM分类预测 | Matlab 鹈鹕优化最小二乘支持向量机分类预测
POA-LSSVM分类预测 | Matlab 鹈鹕优化最小二乘支持向量机分类预测
|
机器学习/深度学习 传感器 算法
DBN-SVM分类预测 | Matlab 深度置信网络-支持向量机分类预测
DBN-SVM分类预测 | Matlab 深度置信网络-支持向量机分类预测
|
机器学习/深度学习 传感器 算法
WOA-LSSVM分类预测 | Matlab 鲸鱼优化最小二乘支持向量机分类预测
WOA-LSSVM分类预测 | Matlab 鲸鱼优化最小二乘支持向量机分类预测
|
机器学习/深度学习 传感器 算法
INFO-LSSVM分类预测 | Matlab 向量加权优化最小二乘支持向量机分类预测
INFO-LSSVM分类预测 | Matlab 向量加权优化最小二乘支持向量机分类预测
|
6月前
|
机器学习/深度学习 数据采集 算法
支持向量机(SVM)在分类问题中的表现与优化方法
支持向量机(SVM)在分类问题中的表现与优化方法
338 1
|
机器学习/深度学习 传感器 算法
SSA-LSSVM分类预测 | Matlab 麻雀优化最小二乘支持向量机分类预测
SSA-LSSVM分类预测 | Matlab 麻雀优化最小二乘支持向量机分类预测
|
机器学习/深度学习 传感器 算法
GWO-LSSVM分类预测 | Matlab 灰狼优化最小二乘支持向量机分类预测
GWO-LSSVM分类预测 | Matlab 灰狼优化最小二乘支持向量机分类预测
|
机器学习/深度学习 传感器 算法
GBO-LSSVM分类预测 | Matlab 梯度优化最小二乘支持向量机分类预测
GBO-LSSVM分类预测 | Matlab 梯度优化最小二乘支持向量机分类预测
|
机器学习/深度学习 传感器 算法
AOA-LSSVM分类预测 | Matlab 阿基米德优化最小二乘支持向量机分类预测
AOA-LSSVM分类预测 | Matlab 阿基米德优化最小二乘支持向量机分类预测
|
机器学习/深度学习 传感器 算法
Matlab KPCA-ISSA-SVM基于核主成分分析和改进麻雀搜索算法优化支持向量机的分类组合预测
Matlab KPCA-ISSA-SVM基于核主成分分析和改进麻雀搜索算法优化支持向量机的分类组合预测