Spring事件监听机制使用和原理解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 今天来分享一下Spring的事件监听机制,之前分享过一篇Spring监听机制的使用,今天从原理上进行解析,Spring的监听机制基于观察者模式,就是就是我们所说的发布订阅模式,这种模式可以在一定程度上实现代码的解耦,如果想要实现系统层面的解耦,那么消息队列就是我们的不二选择,消息队列本身也是发布订阅模式,只是不同的消息队列的实现方式不一样。

前言


今天来分享一下Spring的事件监听机制,之前分享过一篇Spring监听机制的使用,今天从原理上进行解析,Spring的监听机制基于观察者模式,就是就是我们所说的发布订阅模式,这种模式可以在一定程度上实现代码的解耦,如果想要实现系统层面的解耦,那么消息队列就是我们的不二选择,消息队列本身也是发布订阅模式,只是不同的消息队列的实现方式不一样。


使用


之前的文章我们使用了注解的方式,今天我们使用接口的方式来实现。


定义事件


如下定义了一个事件AppEvent,它继承了ApplicationEvent类,如果我们要使用Spring的事件监听机制,那么我们定义的事件必须继承ApplicationEvent ,否则就无法使用。


/**
 * 功能说明: 事件
 * <p>
 * Original @Author: steakliu-刘牌, 2023-03-30  11:02
 * <p>
 * Copyright (C)2020-2022  steakliu All rights reserved.
 */
public class AppEvent extends ApplicationEvent {
    private final String event;
    public AppEvent(Object source, String event) {
        super(source);
        this.event = event;
    }
    public String getEvent() {
        return event;
    }
}


定义事件监听器


事件监听器实现了ApplicationLister接口,其泛型为ApplicationEvent,因为要监听事件,所以必须按照Spring的规则来,onApplicationEvent方法就是监听到的事件,在这里我们可以进行我们的业务处理,我们可以看出AppLister我们加上了@Component注解,因为事件监听器需要加入Spring IOC容器中才能生效。


/**
 * 功能说明:事件监听器
 * <p>
 * Original @Author: steakliu-刘牌, 2023-03-30  11:03
 * <p>
 * Copyright (C)2020-2022  steakliu All rights reserved.
 */
@Component
public class AppListener implements ApplicationListener<AppEvent> {
    @Override
    public void onApplicationEvent(AppEvent event) {
        System.out.println("event:  "+event.getEvent());
    }
}


事件发布器


有了事件监听器,就需要发布事件,所以就需要一个事件发布器,事件发布器使用的是ApplicationEventPublisher,使用它的publishEvent方法进行事件发布。


/**
 * 功能说明:事件发布器
 * <p>
 * Original @Author: steakliu-刘牌, 2023-06-11  13:55
 * <p>
 * Copyright (C)2020-2022  steakliu All rights reserved.
 */
@Component
public class AppPublisher {
    @Resource
    private ApplicationEventPublisher applicationEventPublisher;
    public void publish(){
        applicationEventPublisher.publishEvent(new AppEvent(new AppListener(),"publish event"));
    }
}


测试


为了方便,这里直接使用SpringBoot来进行测试,先获取AppPublisher,然后调用publish发布事件。


@SpringBootApplication
public class Application {
    public static void main(String[] args) {
        ConfigurableApplicationContext context = SpringApplication.run(Application.class, args);
        AppPublisher publisher = context.getBean(AppPublisher.class);
        publisher.publish();
    }
}


上面整个事件发布的代码就写完了,我们可以看出其实还是比较简单的,里面最核心的三个组件分别为,事件(Event)监听器(Listener)发布器(Publisher),实际使用中我们可以根据自己的需求去实现。


原理


上面我们知道了Spring的事件监听机制的基本使用,那么整个事件在Spring中是怎么流转的呢,我们很有必要去弄清楚。


我们使用的是SpringBoot项目来进行测试,我们先找到SpringBoot对事件监听机制进行处理的入口,然后再进行分析,SpringBoot对上下文进行处理的入口类是AbstractApplicationContext,它是Spring的入口,其中我们主要关注的refresh()方法,因为refresh中的方法比较多,我们下面只保留了三个方法。


@Override
  public void refresh() throws BeansException, IllegalStateException {
    synchronized (this.startupShutdownMonitor) {
    // Initialize event multicaster for this context.
        initApplicationEventMulticaster();
        // Check for listener beans and register them.
        registerListeners();
        // Last step: publish corresponding event.
        finishRefresh();
      }
    }
  }


initApplicationEventMulticaster()


ApplicationEventMulticaster是一个接口,它定义了如何将ApplicationEvent传递给事件监听者(event listener)。该接口有多个实现类,可以使用不同的策略将事件分派给不同的监听者。


ApplicationEventMulticaster为Spring事件机制的核心之一,它支持在应用中传递事件,并且可以将事件广播给多个监听者。在Spring中,事件是由ApplicationEvent及其子类表示的,例如ContextStartedEvent和ContextStoppedEvent等。当某些事件发生时,Spring容器将使用事件广播机制来通知感兴趣的监听者。


这个方法的作用是对ApplicationEventMulticaster进行赋值,Spring在初始化的时候会将ApplicationEventMulticaster注册进IOC容器,这里就只是单纯从IOC容器中获取ApplicationEventMulticaster来进行赋值,以方便后续的使用。


protected void initApplicationEventMulticaster() {
        ConfigurableListableBeanFactory beanFactory = getBeanFactory();
        if (beanFactory.containsLocalBean(APPLICATION_EVENT_MULTICASTER_BEAN_NAME)) {
            this.applicationEventMulticaster =
                    beanFactory.getBean(APPLICATION_EVENT_MULTICASTER_BEAN_NAME, ApplicationEventMulticaster.class);
            if (logger.isTraceEnabled()) {
                logger.trace("Using ApplicationEventMulticaster [" + this.applicationEventMulticaster + "]");
            }
        } else {
            this.applicationEventMulticaster = new SimpleApplicationEventMulticaster(beanFactory);
            beanFactory.registerSingleton(APPLICATION_EVENT_MULTICASTER_BEAN_NAME, this.applicationEventMulticaster);
            if (logger.isTraceEnabled()) {
                logger.trace("No '" + APPLICATION_EVENT_MULTICASTER_BEAN_NAME + "' bean, using " +
                        "[" + this.applicationEventMulticaster.getClass().getSimpleName() + "]");
            }
        }
    }


registerListeners()


这个方法的作用主要就是注册监听器,它会从IOC容器获取到我们注册的监听器,然后将其加入到Multicaster中,在AbstractApplicationEventMulticaster中,使用一个Set集合来装监听器。


public final Set<String> applicationListenerBeans = new LinkedHashSet<>();


finishRefresh()


finishRefresh()的作用是发布事件,里面是一些发布事件的逻辑,但是由于我们还没有正式发布事件,所以这里并不会发布事件,当我们使用applicationEventPublisher的publishEvent方法发布事件时,才会真正的发布事件。


ApplicationEventPublisher发布事件


上面示例中使用ApplicationEventPublisher的publishEvent发布事件,最终会进入AbstractApplicationContext类中进行事件发布,我们只关注最重要的方法multicastEvent(),它是广播器ApplicationEventMulticaster的一个方法事件都是由广播器进行发布。


protected void publishEvent(Object event, @Nullable ResolvableType eventType) {
  getApplicationEventMulticaster().multicastEvent(applicationEvent, eventType);
}


ApplicationEventMulticaster真正发布事件


ApplicationEventPublisher并没有真正发布事件,它相当于只是抽象了事件的发布,为了让我们更加简单和方便使用,但是真正发布事件的是ApplicationEventMulticaster,在multicastEvent()方法中,如果我们配置了线程池,那么事件就会被加入线程池,从而异步执行,如果没有设置线程池,那么就同步执行,最终执行都是调用invokeListener()方法。


public void multicastEvent(ApplicationEvent event, @Nullable ResolvableType eventType) {
        ResolvableType type = (eventType != null ? eventType : resolveDefaultEventType(event));
        Executor executor = getTaskExecutor();
        for (ApplicationListener<?> listener : getApplicationListeners(event, type)) {
            if (executor != null) {
                executor.execute(() -> invokeListener(listener, event));
            } else {
                invokeListener(listener, event);
            }
        }
    }


默认是不会使用线程池的,如果我们需要事件异步执行,那么可以配置线程池,其核心就是给广播器SimpleApplicationEventMulticaster的成员变量taskExecutor设置


/**
 * 功能说明: 事件任务线程池
 * <p>
 * Original @Author: steakliu-刘牌, 2023-06-11  13:17
 * <p>
 * Copyright (C)2020-2022  steakliu All rights reserved.
 */
@Configuration
public class TaskExecutor {
    @Bean("eventTaskExecutor")
    public Executor taskExecutor() {
        ThreadPoolTaskExecutor threadPoolTaskExecutor = new ThreadPoolTaskExecutor();
        threadPoolTaskExecutor.setCorePoolSize(10);
        threadPoolTaskExecutor.setMaxPoolSize(20);
        threadPoolTaskExecutor.setKeepAliveSeconds(10);
        threadPoolTaskExecutor.setThreadNamePrefix("application-event-thread");
        threadPoolTaskExecutor.setQueueCapacity(100);
        threadPoolTaskExecutor.setAllowCoreThreadTimeOut(true);
        threadPoolTaskExecutor.setAllowCoreThreadTimeOut(true);
        threadPoolTaskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.DiscardOldestPolicy());
        threadPoolTaskExecutor.initialize();
        return threadPoolTaskExecutor;
    }
    @Bean
    public ApplicationEventMulticaster applicationEventMulticaster() {
        SimpleApplicationEventMulticaster simpleApplicationEventMulticaster = new SimpleApplicationEventMulticaster();
        simpleApplicationEventMulticaster.setTaskExecutor(taskExecutor());
        return simpleApplicationEventMulticaster;
    }
}


invokeListener


invokeListener最终会通过传入的监听器去调用目标监听器,也就是我们自定义的监听器,主要代码如下,我们可以看到最终调用onApplicationEvent方法,就是我们上面示例AppListener监听器的onApplicationEvent方法。


private void doInvokeListener(ApplicationListener listener, ApplicationEvent event) {
     listener.onApplicationEvent(event);
}


到这里,整个流程就完了,我们梳理一下重要的组件。


  • ApplicationEvent

  • ApplicationListener

  • ApplicationEventPublisher

  • ApplicationEventMulticaster

上面的四个组件基本上就是Spring事件监听机制的全部,ApplicationEvent是事件的规范,ApplicationListener是监听器,ApplicationEventPublisher是发布器,ApplicationEventMulticaster是广播器,其实ApplicationEventMulticaster和ApplicationEventPublisher本质是一样的,都能完成事件的发布,ApplicationEventPublisher最终也是去调用ApplicationEventMulticaster,只不过它只专注于事件发布,单独提出一个接口来,职责更加单一,这也是一种设计思想。


总结


上面对Spring事件监听机制的使用和原理进行了详细的介绍,并对其中涉及的组件进行解析,Spring事件监听机制是一个很不错的功能,我们在进行业务开发的时候可以引入,在相关的开源框架中也是用它的身影,比如高性能网关ShenYu中就使用了Spring事件监听机制来发布网关的更新数据,它可以降低系统的耦合性,使系统的扩展性更好。


今天的分享就到这里,感谢你的观看,我们下期见,如果文中有说得不合理或者不对的地方,希望你能指出,我们进行交流!


目录
相关文章
|
7天前
|
数据采集 人工智能 Java
1天消化完Spring全家桶文档!DevDocs:一键深度解析开发文档,自动发现子URL并建立图谱
DevDocs是一款基于智能爬虫技术的开源工具,支持1-5层深度网站结构解析,能将技术文档处理时间从数周缩短至几小时,并提供Markdown/JSON格式输出与AI工具无缝集成。
63 1
1天消化完Spring全家桶文档!DevDocs:一键深度解析开发文档,自动发现子URL并建立图谱
|
8天前
|
安全 Java API
深入解析 Spring Security 配置中的 CSRF 启用与 requestMatchers 报错问题
本文深入解析了Spring Security配置中CSRF启用与`requestMatchers`报错的常见问题。针对CSRF,指出默认已启用,无需调用`enable()`,只需移除`disable()`即可恢复。对于`requestMatchers`多路径匹配报错,分析了Spring Security 6.x中方法签名的变化,并提供了三种解决方案:分次调用、自定义匹配器及降级使用`antMatchers()`。最后提醒开发者关注版本兼容性,确保升级平稳过渡。
52 2
|
28天前
|
存储 Java 文件存储
微服务——SpringBoot使用归纳——Spring Boot使用slf4j进行日志记录—— logback.xml 配置文件解析
本文解析了 `logback.xml` 配置文件的详细内容,包括日志输出格式、存储路径、控制台输出及日志级别等关键配置。通过定义 `LOG_PATTERN` 和 `FILE_PATH`,设置日志格式与存储路径;利用 `&lt;appender&gt;` 节点配置控制台和文件输出,支持日志滚动策略(如文件大小限制和保存时长);最后通过 `&lt;logger&gt;` 和 `&lt;root&gt;` 定义日志级别与输出方式。此配置适用于精细化管理日志输出,满足不同场景需求。
133 1
|
8天前
|
前端开发 安全 Java
Spring Boot 便利店销售系统项目分包设计解析
本文深入解析了基于Spring Boot的便利店销售系统分包设计,通过清晰的分层架构(表现层、业务逻辑层、数据访问层等)和模块化设计,提升了代码的可维护性、复用性和扩展性。具体分包结构包括`controller`、`service`、`repository`、`entity`、`dto`、`config`和`util`等模块,职责分明,便于团队协作与功能迭代。该设计为复杂企业级应用开发提供了实践参考。
39 0
|
17天前
|
存储 人工智能 自然语言处理
RAG 调优指南:Spring AI Alibaba 模块化 RAG 原理与使用
通过遵循以上最佳实践,可以构建一个高效、可靠的 RAG 系统,为用户提供准确和专业的回答。这些实践涵盖了从文档处理到系统配置的各个方面,能够帮助开发者构建更好的 RAG 应用。
597 112
|
2月前
|
安全 算法 网络协议
解析:HTTPS通过SSL/TLS证书加密的原理与逻辑
HTTPS通过SSL/TLS证书加密,结合对称与非对称加密及数字证书验证实现安全通信。首先,服务器发送含公钥的数字证书,客户端验证其合法性后生成随机数并用公钥加密发送给服务器,双方据此生成相同的对称密钥。后续通信使用对称加密确保高效性和安全性。同时,数字证书验证服务器身份,防止中间人攻击;哈希算法和数字签名确保数据完整性,防止篡改。整个流程保障了身份认证、数据加密和完整性保护。
|
8天前
|
Java 关系型数据库 MySQL
深入解析 @Transactional——Spring 事务管理的核心
本文深入解析了 Spring Boot 中 `@Transactional` 的工作机制、常见陷阱及最佳实践。作为事务管理的核心注解,`@Transactional` 确保数据库操作的原子性,避免数据不一致问题。文章通过示例讲解了其基本用法、默认回滚规则(仅未捕获的运行时异常触发回滚)、因 `try-catch` 或方法访问修饰符不当导致失效的情况,以及数据库引擎对事务的支持要求。最后总结了使用 `@Transactional` 的五大最佳实践,帮助开发者规避常见问题,提升项目稳定性与可靠性。
115 11
|
9天前
|
缓存 安全 Java
深入解析HTTP请求方法:Spring Boot实战与最佳实践
这篇博客结合了HTTP规范、Spring Boot实现和实际工程经验,通过代码示例、对比表格和架构图等方式,系统性地讲解了不同HTTP方法的应用场景和最佳实践。
67 5
|
8天前
|
安全 Java 数据安全/隐私保护
Spring Security: 深入解析 AuthenticationSuccessHandler
本文深入解析了 Spring Security 中的 `AuthenticationSuccessHandler` 接口,它用于处理用户认证成功后的逻辑。通过实现该接口,开发者可自定义页面跳转、日志记录等功能。文章详细讲解了接口方法参数及使用场景,并提供了一个根据用户角色动态跳转页面的示例。结合 Spring Security 配置,展示了如何注册自定义的成功处理器,帮助开发者灵活应对认证后的多样化需求。
40 2
|
1月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
241 7
深入解析图神经网络注意力机制:数学原理与可视化实现

推荐镜像

更多