【机器学习5】数据处理(二)Pandas:表格处理 1

简介: 【机器学习5】数据处理(二)Pandas:表格处理

🌟🌟Pandas三种数据类型

Pandas提供了三种数据类型,分别是SeriesDataFramePanel。Series用于保存一维数据,DataFrame用于保存二维数据,Panel用于保存三维数据或者可变维数据。平时的表格处理数据分析最常用的数据类型是SeriesDataFrame,Panel较少用到。

✨✨Series数据结构

Series本质上是一个含有索引的一维数组,其包含一个左侧自动生成的index和右侧的values值,分别使用s.indexs.values进行查看。

下面举个例子:

下面我们导入数据:

import pandas  as pd
s=pd.read_excel("D:\A_data\Data_Series.xlsx")
s

运行结果如下:

其中,左侧这一列就是索引列,下面我们分别打印s.index和s.values

index返回一个index对象,而values返回一个array。

✨✨ DataFrame数据结构

DataFrame(数据框)类似于Excel电子表格,也与R语言中DataFrame的数据结构类似。

🌙🌙DataFrame数据的选取

🌕🌕DataFrame的构建

import pandas as pd
df=pd.DataFrame({'x':['a','b','c'],'y':[1,2,3],'z':[4,5,6]})
df

🌕🌕选取多行

方法一:

df.iloc[[0,1],:]

df.iloc[[0,2],:]

方法二:

df.loc[['0','2'],:]

🌕🌕选取某一列

df.y
df['y']
df.loc[:,['y']]
df.iloc[:,[1]]

🌕🌕选取多列

方法一:

df.iloc[:,[1,2]]

方法二:

df.loc[:,['x','y']]

方法三:

df[['x','y']]


相关文章
|
2月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
257 0
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
411 0
|
4月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
369 0
|
6月前
|
运维 数据挖掘 数据处理
Pandas时间数据处理:从基础到进阶的实战指南
Pandas时间数据处理涵盖了从基础到高级的全面功能。其核心由Timestamp、DatetimeIndex、Period和Timedelta四个类构建,支持精准的时间点与区间操作。内容包括时间数据生成(字符串解析与序列生成)、时间索引与切片、高级运算(偏移重采样与窗口计算)、时区处理、周期性数据分析及实战案例(如智能电表数据)。此外,还涉及性能优化技巧和未来展望,帮助用户高效处理时间序列数据并应用于预测分析等场景。
279 1
|
6月前
|
传感器 安全 数据处理
Pandas时间数据处理:从基础到进阶的实战指南
本文深入讲解Pandas时间数据处理技巧,从时间对象转换到高性能计算全面覆盖。通过真实案例拆解,掌握Timestamp与Period的核心概念、时间序列生成、重采样方法及窗口函数应用。同时剖析时区处理、性能优化策略及常见陷阱解决方案,并展望Pandas 2.0的时间处理新特性。内容强调“时间索引优先”原则,助你高效分析股票K线、用户行为等时间序列数据。
177 0
|
10月前
|
缓存 数据可视化 BI
Pandas高级数据处理:数据仪表板制作
在数据分析中,面对庞大、多维度的数据集(如销售记录、用户行为日志),直接查看原始数据难以快速抓住重点。传统展示方式(如Excel表格)缺乏交互性和动态性,影响决策效率。为此,我们利用Python的Pandas库构建数据仪表板,具备数据聚合筛选、可视化图表生成和性能优化功能,帮助业务人员直观分析不同品类商品销量分布、省份销售额排名及日均订单量变化趋势,提升数据洞察力与决策效率。
223 12
|
10月前
|
数据可视化 数据挖掘 数据处理
Pandas高级数据处理:数据可视化进阶
Pandas是数据分析的强大工具,能高效处理数据并与Matplotlib、Seaborn等库集成,实现数据可视化。本文介绍Pandas在绘制基础图表(如折线图)和进阶图表(如分组柱状图、热力图)时的常见问题及解决方案,涵盖数据准备、报错处理、图表优化等内容,并通过代码案例详细解释,帮助读者掌握数据可视化的技巧。
222 13
|
10月前
|
数据采集 SQL 数据可视化
Pandas高级数据处理:交互式数据探索
Pandas是Python中流行的数据分析库,提供丰富的数据结构和函数,简化数据操作。本文从基础到高级介绍Pandas的使用,涵盖安装、读取CSV/Excel文件、数据查看与清洗、类型转换、条件筛选、分组聚合及可视化等内容。掌握这些技能,能高效进行交互式数据探索和预处理。
133 6
|
10月前
|
数据采集 存储 数据可视化
Pandas高级数据处理:数据报告生成
Pandas 是数据分析领域不可或缺的工具,支持多种文件格式的数据读取与写入、数据清洗、筛选与过滤。本文从基础到高级,介绍如何使用 Pandas 进行数据处理,并解决常见问题和报错,如数据类型不一致、时间格式解析错误、内存不足等。最后,通过数据汇总、可视化和报告导出,生成专业的数据报告,帮助你在实际工作中更加高效地处理数据。
287 8
|
10月前
|
存储 数据挖掘 数据处理
Pandas高级数据处理:数据安全与隐私保护
在数字化时代,数据安全与隐私保护至关重要。本文介绍使用Pandas进行数据分析时常见的安全问题及解决方案,包括数据泄露风险、权限报错、数据类型转换错误等,并结合代码案例详细讲解如何避免和解决这些问题。同时,探讨高级策略如访问控制、匿名化、差分隐私及加密传输存储,确保数据分析合法合规。
282 7

热门文章

最新文章