基于Vgg16和Vgg19深度学习网络的步态识别系统matlab仿真

简介: 基于Vgg16和Vgg19深度学习网络的步态识别系统matlab仿真

1.算法运行效果图预览

1.png
2.png
3.jpeg

2.算法运行软件版本
MATLAB2022A

3.算法理论概述
步态识别作为生物特征识别领域的一个重要分支,在人体运动分析、身份验证、健康监测等方面具有广泛的应用前景。步态能量图(Gait Energy Image,简称GEI)是一种有效的步态表示方法,通过将多帧步态图像的信息融合为一张图像,提取并表达了个体的步态特征。结合深度学习网络如Vgg16和Vgg19,可以构建出高性能的步态识别系统,实现对个体的准确识别。本文将从数学公式、实现过程和应用领域三个方面详细介绍通过GEI步态能量图,实现基于Vgg16和Vgg19深度学习网络的步态识别系统。

12f98ea5bd87121ef233dae3e9f7e813_82780907_202309252211330926572569_Expires=1695651693&Signature=nPRHy0VpZjs54fkYYbGWjv3gKJc%3D&domain=8.png

实现过程:

步态能量图生成: 首先,从步态视频序列中提取出每一帧的步态图像。然后,根据GEI计算公式,将这些步态图像叠加并取平均,得到一个整体的GEI步态能量图。

深度学习网络训练: 使用预训练的Vgg16和Vgg19模型,将步态能量图输入网络进行训练。训练过程包括前向传播、损失函数计算、反向传播等步骤。损失函数可以选择交叉熵损失或其他适合步态识别任务的损失函数。

步态识别系统构建: 训练完成后,可以得到训练好的Vgg16和Vgg19模型。将测试集的步态能量图输入模型进行预测,得到步态识别结果。

应用领域:

步态识别系统基于GEI步态能量图和深度学习网络在多个领域中具有广泛的应用:

人体识别与安全: 可以用于公共场所的人员识别和身份验证,如机场、银行等,提高安全性。

医疗健康: 在医疗领域,可以用于监测和分析患者的步态变化,辅助诊断和康复。

智能监控: 可以应用于视频监控系统,实现对特定人员的识别跟踪,用于安防和行为分析。

虚拟现实: 可以用于虚拟现实技术中,实现用户的步态驱动角色动作,增强沉浸感。

总结:

   通过GEI步态能量图和Vgg16、Vgg19深度学习网络的结合,我们可以构建出高性能的步态识别系统。这个系统在人体识别、医疗健康、智能监控、虚拟现实等多个领域都有着重要的应用,为实现准确的步态识别和分析提供了一种新的方法。在未来,随着深度学习技术的不断发展和步态数据的丰富,这种基于GEI和深度学习的步态识别系统将会变得更加精确和实用。

4.部分核心程序

```% 设置训练选项
options = trainingOptions('sgdm', ...
'InitialLearnRate', 0.000025, ...
'MaxEpochs', 50, ...
'MiniBatchSize',20,...
'ValidationData', imdsValidation, ...
'ValidationFrequency', 10, ...
'Verbose', false, ...
'Plots', 'training-progress');

% 训练网络
net = trainNetwork(imdsTrain,layers,options);

%对验证图像进行分类并计算精度
digitDatasetPath = ['步态能量图\'];
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders', true, 'LabelSource', 'foldernames');
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.75);
YPred = classify(net, imdsValidation);
YValidation = imdsValidation.Labels;

accuracy1 = 100*sum(YPred == YValidation) / numel(YValidation)

% 保存结果
save R16.mat accuracy1

```

相关文章
|
4月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
269 0
|
4月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
4月前
|
Ubuntu 网络协议 网络安全
解决Ubuntu系统的网络连接问题
以上步骤通常可以帮助解决大多数Ubuntu系统的网络连接问题。如果问题仍然存在,可能需要更深入的诊断,或考虑联系网络管理员或专业技术人员。
977 18
|
4月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
4月前
|
机器学习/深度学习 分布式计算 Java
Java与图神经网络:构建企业级知识图谱与智能推理系统
图神经网络(GNN)作为处理非欧几里得数据的前沿技术,正成为企业知识管理和智能推理的核心引擎。本文深入探讨如何在Java生态中构建基于GNN的知识图谱系统,涵盖从图数据建模、GNN模型集成、分布式图计算到实时推理的全流程。通过具体的代码实现和架构设计,展示如何将先进的图神经网络技术融入传统Java企业应用,为构建下一代智能决策系统提供完整解决方案。
456 0
|
SQL 监控 安全
网络安全与信息安全:漏洞、加密与安全意识
随着互联网的迅猛发展,网络安全和信息安全问题日益受到关注。本文深入探讨了网络安全漏洞、加密技术以及提高个人和组织的安全意识的重要性。通过分析常见的网络攻击手段如缓冲区溢出、SQL注入等,揭示了计算机系统中存在的缺陷及其潜在威胁。同时,详细介绍了对称加密和非对称加密算法的原理及应用场景,强调了数字签名和数字证书在验证信息完整性中的关键作用。此外,还讨论了培养良好上网习惯、定期备份数据等提升安全意识的方法,旨在帮助读者更好地理解和应对复杂的网络安全挑战。
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
319 17
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
254 10
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章