基于Vgg16和Vgg19深度学习网络的步态识别系统matlab仿真

简介: 基于Vgg16和Vgg19深度学习网络的步态识别系统matlab仿真

1.算法运行效果图预览

1.png
2.png
3.jpeg

2.算法运行软件版本
MATLAB2022A

3.算法理论概述
步态识别作为生物特征识别领域的一个重要分支,在人体运动分析、身份验证、健康监测等方面具有广泛的应用前景。步态能量图(Gait Energy Image,简称GEI)是一种有效的步态表示方法,通过将多帧步态图像的信息融合为一张图像,提取并表达了个体的步态特征。结合深度学习网络如Vgg16和Vgg19,可以构建出高性能的步态识别系统,实现对个体的准确识别。本文将从数学公式、实现过程和应用领域三个方面详细介绍通过GEI步态能量图,实现基于Vgg16和Vgg19深度学习网络的步态识别系统。

12f98ea5bd87121ef233dae3e9f7e813_82780907_202309252211330926572569_Expires=1695651693&Signature=nPRHy0VpZjs54fkYYbGWjv3gKJc%3D&domain=8.png

实现过程:

步态能量图生成: 首先,从步态视频序列中提取出每一帧的步态图像。然后,根据GEI计算公式,将这些步态图像叠加并取平均,得到一个整体的GEI步态能量图。

深度学习网络训练: 使用预训练的Vgg16和Vgg19模型,将步态能量图输入网络进行训练。训练过程包括前向传播、损失函数计算、反向传播等步骤。损失函数可以选择交叉熵损失或其他适合步态识别任务的损失函数。

步态识别系统构建: 训练完成后,可以得到训练好的Vgg16和Vgg19模型。将测试集的步态能量图输入模型进行预测,得到步态识别结果。

应用领域:

步态识别系统基于GEI步态能量图和深度学习网络在多个领域中具有广泛的应用:

人体识别与安全: 可以用于公共场所的人员识别和身份验证,如机场、银行等,提高安全性。

医疗健康: 在医疗领域,可以用于监测和分析患者的步态变化,辅助诊断和康复。

智能监控: 可以应用于视频监控系统,实现对特定人员的识别跟踪,用于安防和行为分析。

虚拟现实: 可以用于虚拟现实技术中,实现用户的步态驱动角色动作,增强沉浸感。

总结:

   通过GEI步态能量图和Vgg16、Vgg19深度学习网络的结合,我们可以构建出高性能的步态识别系统。这个系统在人体识别、医疗健康、智能监控、虚拟现实等多个领域都有着重要的应用,为实现准确的步态识别和分析提供了一种新的方法。在未来,随着深度学习技术的不断发展和步态数据的丰富,这种基于GEI和深度学习的步态识别系统将会变得更加精确和实用。

4.部分核心程序

```% 设置训练选项
options = trainingOptions('sgdm', ...
'InitialLearnRate', 0.000025, ...
'MaxEpochs', 50, ...
'MiniBatchSize',20,...
'ValidationData', imdsValidation, ...
'ValidationFrequency', 10, ...
'Verbose', false, ...
'Plots', 'training-progress');

% 训练网络
net = trainNetwork(imdsTrain,layers,options);

%对验证图像进行分类并计算精度
digitDatasetPath = ['步态能量图\'];
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders', true, 'LabelSource', 'foldernames');
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.75);
YPred = classify(net, imdsValidation);
YValidation = imdsValidation.Labels;

accuracy1 = 100*sum(YPred == YValidation) / numel(YValidation)

% 保存结果
save R16.mat accuracy1

```

相关文章
|
8天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
5天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
9天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
7天前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
16天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的知识,并提供一些实用的技巧和建议,帮助读者更好地保护自己的网络安全和信息安全。
|
6天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
7天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
24 10
|
8天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
33 10
|
6天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。