机器学习模型评估

简介: 机器学习模型评估

1 误差平方和

误差平方和(SSE \The sum of squares due to error)具体概念通过如下举例介绍:

举例:

(下图中数据-0.2, 0.4, -0.8, 1.3, -0.7, 均为真实值和预测值的差)

k-means中的应用:

公式各部分内容:

上图中: k=2

SSE图最终的结果,对图松散度的衡量.(eg: SSE(左图)<SSE(右图))


SSE随着聚类迭代,其值会越来越小,直到最后趋于稳定:


[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FpTXPQML-1665118088623)(images/sse5.png)]


如果质心的初始值选择不好,SSE只会达到一个不怎么好的局部最优解.

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-V0gLuoyw-1665118088624)(images/sse6.png)]

2 “肘”方法

“肘”方法 (Elbow method) 主要是用于确定聚类算法中的K值,具体流程如下:

(1)对于n个点的数据集,迭代计算k from 1 to n,每次聚类完成后计算每个点到其所属的簇中心的距离的平方和;


(2)平方和是会逐渐变小的,直到k==n时平方和为0,因为每个点都是它所在的簇中心本身。


(3)在这个平方和变化过程中,会出现一个拐点也即“肘”点,下降率突然变缓时即认为是最佳的k值。


在决定什么时候停止训练时,肘形判据同样有效,数据通常有更多的噪音,在增加分类无法带来更多回报时,我们停止增加类别。

3 轮廓系数

轮廓系数法(Silhouette Coefficient)结合了聚类的凝聚度(Cohesion)和分离度(Separation),用于评估聚类的效果:

目的:

内部距离最小化,外部距离最大化

计算样本i到同簇其他样本的平均距离ai,ai 越小样本i的簇内不相似度越小,说明样本i越应该被聚类到该簇。


计算样本i到最近簇Cj 的所有样本的平均距离bij,称样本i与最近簇Cj 的不相似度,定义为样本i的簇间不相似度:bi =min{bi1, bi2, …, bik},bi越大,说明样本i越不属于其他簇。


求出所有样本的轮廓系数后再求平均值就得到了平均轮廓系数。


平均轮廓系数的取值范围为[-1,1],系数越大,聚类效果越好。


簇内样本的距离越近,簇间样本距离越远案例:

下图是500个样本含有2个feature的数据分布情况,我们对它进行SC系数效果衡量:

n_clusters = 2 The average silhouette_score is : 0.7049787496083262


n_clusters = 3 The average silhouette_score is : 0.5882004012129721


n_clusters = 4 The average silhouette_score is : 0.6505186632729437


n_clusters = 5 The average silhouette_score is : 0.56376469026194


n_clusters = 6 The average silhouette_score is : 0.4504666294372765


n_clusters 分别为 2,3,4,5,6时,SC系数如下,是介于[-1,1]之间的度量指标:


每次聚类后,每个样本都会得到一个轮廓系数,当它为1时,说明这个点与周围簇距离较远,结果非常好,当它为0,说明这个点可能处在两个簇的边界上,当值为负时,暗含该点可能被误分了。


从平均SC系数结果来看,K取3,5,6是不好的,那么2和4呢?k=2的情况:

k=4的情况:

n_clusters = 2时,第0簇的宽度远宽于第1簇;

n_clusters = 4时,所聚的簇宽度相差不大,因此选择K=4,作为最终聚类个数。

4 CH系数

CH系数(Calinski-Harabasz Index)追求的是:类别内部数据的协方差越小越好,类别之间的协方差越大越好(换句话说:类别内部数据的距离平方和越小越好,类别之间的距离平方和越大越好)。


这样的Calinski-Harabasz分数s会高,分数s高则聚类效果越好。

25a13f30a13b6eb5288ac6c0dc0c2c28.jpg

tr为矩阵的迹, Bk为类别之间的协方差矩阵,Wk为类别内部数据的协方差矩阵;

m为训练集样本数,k为类别数。



使用矩阵的迹进行求解的理解:


矩阵的对角线可以表示一个物体的相似性


在机器学习里,主要为了获取数据的特征值,那么就是说,在任何一个矩阵计算出来之后,都可以简单化,只要获取矩阵的迹,就可以表示这一块数据的最重要的特征了,这样就可以把很多无关紧要的数据删除掉,达到简化数据,提高处理速度。


CH需要达到的目的:


用尽量少的类别聚类尽量多的样本,同时获得较好的聚类效果。

5 小结

  • sse【知道】
  • 误差平方和的值越小越好
  • 肘部法【知道】
  • 下降率突然变缓时即认为是最佳的k值
  • SC系数【知道】
  • 取值为[-1, 1],其值越大越好
  • CH系数【知道】
  • 分数s高则聚类效果越好
  • CH需要达到的目的:用尽量少的类别聚类尽量多的样本,同时获得较好的聚类效果。
目录
相关文章
|
1天前
|
机器学习/深度学习 数据采集 监控
构建高效机器学习模型的最佳实践
【5月更文挑战第16天】 在数据驱动的时代,机器学习已成为创新的核心推动力。本文将深入探讨如何构建一个高效的机器学习模型,包括数据预处理、特征选择、模型训练与优化等关键步骤。通过实例分析和技术讲解,旨在为读者提供一套实用的技术指导和最佳实践方法,以支持其在复杂数据环境中实现准确预测和智能决策。
|
2天前
|
机器学习/深度学习 人工智能 算法
为什么大模型训练需要GPU,以及适合训练大模型的GPU介绍
为什么大模型训练需要GPU,以及适合训练大模型的GPU介绍
19 0
|
2天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据预处理到模型优化
【5月更文挑战第14天】 在机器学习项目中,模型的性能不仅取决于算法的选择,还受到数据处理和模型配置的影响。本文将探讨如何通过有效的数据预处理和细致的模型调优来提升机器学习模型的效能。我们将讨论数据清洗、特征工程、以及超参数调整等关键步骤,并通过实例展示这些技术如何实现在不同类型的数据集上。目标是为读者提供一套实用的策略,以帮助他们在面对实际问题时能够构建出更加健壮和精确的机器学习模型。
|
2天前
|
机器学习/深度学习 BI
机器学习模型评估指标总结
机器学习模型评估指标总结
9 2
|
2天前
|
机器学习/深度学习 监控 算法
构建高效机器学习模型的五大技巧
【5月更文挑战第13天】 在数据科学领域,机器学习模型的性能往往决定了项目成功与否。本文将深入探讨提升机器学习模型效率和准确度的五个关键技巧。这些技巧包括数据处理优化、特征工程精炼、算法选择与调整、模型集成以及持续监控与调优。文章将结合实例分析每个技巧的实施过程及其对模型性能的影响。通过这些策略,读者可以构建出更加健壮、高效的机器学习模型,并为未来的项目提供实用的技术参考。
|
2天前
|
机器学习/深度学习 监控 算法
LabVIEW使用机器学习分类模型探索基于技能课程的学习
LabVIEW使用机器学习分类模型探索基于技能课程的学习
11 1
|
2天前
|
机器学习/深度学习 数据采集
构建高效机器学习模型的最佳实践
【5月更文挑战第11天】 在数据驱动的时代背景下,机器学习已经成为企业与研究者解决复杂问题的重要工具。本文将探讨构建高效机器学习模型的关键步骤,包括数据预处理、特征工程、模型选择与调参、以及性能评估。我们将深入分析这些步骤的重要性,并提供实用的技巧和最佳实践,以助读者提高模型的预测能力与泛化性能。通过案例分析和经验总结,本文旨在为从业者提供一套系统的方法论,帮助他们在面对各种机器学习项目时能够更有效地设计和实现解决方案。
6 0
|
2天前
|
机器学习/深度学习 存储 算法
【机器学习】使用贝叶斯模型做分类时,可能会碰到什么问题?怎么解决?
【5月更文挑战第11天】【机器学习】使用贝叶斯模型做分类时,可能会碰到什么问题?怎么解决?
|
2天前
|
机器学习/深度学习
【机器学习】噪声数据对贝叶斯模型有什么样的影响?
【5月更文挑战第10天】【机器学习】噪声数据对贝叶斯模型有什么样的影响?
|
2天前
|
机器学习/深度学习 数据处理
【机器学习】生成式模型与判别式模型有什么区别?
【5月更文挑战第10天】【机器学习】生成式模型与判别式模型有什么区别?

热门文章

最新文章