机器学习聚类算法

简介: 机器学习聚类算法

1 认识聚类算法

使用不同的聚类准则,产生的聚类结果不同

1.1 聚类算法在现实中的应用

  • 用户画像,广告推荐,Data Segmentation,搜索引擎的流量推荐,恶意流量识别
  • 基于位置信息的商业推送,新闻聚类,筛选排序
  • 图像分割,降维,识别;离群点检测;信用卡异常消费;发掘相同功能的基因片段

1.2 聚类算法的概念

聚类算法

一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。

在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。

1.3 聚类与分类最大的区别

聚类算法是无监督的学习算法,而分类算法属于监督的学习算法。


1.4 小结

  • 聚类算法分类【了解】
  • 粗聚类
  • 细聚类
  • 聚类的定义【了解】
  • 一种典型的无监督学习算法,
  • 主要用于将相似的样本自动归到一个类别中
  • 计算样本和样本之间的相似性,一般使用欧式距离

2 聚类算法api初步使用

2.1 api介绍

参数:

n_clusters:开始的聚类中心数量

整型,缺省值=8,生成的聚类数,即产生的质心(centroids)数。

方法:

estimator.fit(x)

estimator.predict(x)

estimator.fit_predict(x)

计算聚类中心并预测每个样本属于哪个类别,相当于先调用fit(x),然后再调用predict(x)

2.2 案例

随机创建不同二维数据集作为训练集,并结合k-means算法将其聚类,你可以尝试分别聚类不同数量的簇,并观察聚类效果:

聚类参数n_cluster传值不同,得到的聚类结果不同

2.2.1流程分析

2.2.2 代码实现

1.创建数据集

import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabaz_score
# 创建数据集
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共4个簇,
# 簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1, -1], [0, 0], [1, 1], [2, 2]],
                  cluster_std=[0.4, 0.2, 0.2, 0.2],
                  random_state=9)
# 数据集可视化
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()

2.使用k-means进行聚类,并使用CH方法评估

y_pred = KMeans(n_clusters=2, random_state=9).fit_predict(X)
# 分别尝试n_cluses=2\3\4,然后查看聚类效果
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
# 用Calinski-Harabasz Index评估的聚类分数
print(calinski_harabaz_score(X, y_pred))

2.3 小结

  • api:sklearn.cluster.KMeans(n_clusters=8)【知道】
  • 参数:
  • n_clusters:开始的聚类中心数量
  • 方法:
  • estimator.fit_predict(x)
  • 计算聚类中心并预测每个样本属于哪个类别,相当于先调用fit(x),然后再调用predict(x)

3 聚类算法实现流程

3.1 k-means聚类步骤

1、随机设置K个特征空间内的点作为初始的聚类中心

2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别

3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)

4、如果计算得出的新中心点与原中心点一样(质心不再移动),那么结束,否则重新进行第二步过程通过下图解释实现流程:

k聚类动态效果图

3.2 案例练习

  • 案例:

  • 1、随机设置K个特征空间内的点作为初始的聚类中心(本案例中设置p1和p2)

2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别

3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)

4、如果计算得出的新中心点与原中心点一样(质心不再移动),那么结束,否则重新进行第二步过程【经过判断,需要重复上述步骤,开始新一轮迭代】

5、当每次迭代结果不变时,认为算法收敛,聚类完成,K-Means一定会停下,不可能陷入一直选质心的过程。

3.3 小结

  • K-means聚类实现流程【掌握】
  • 事先确定常数K,常数K意味着最终的聚类类别数;
  • 随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,
  • 接着,重新计算每个类的质心(即为类中心),重复这样的过程,直到质心不再改变
  • 最终就确定了每个样本所属的类别以及每个类的质心。
  • 注意:
  • 由于每次都要计算所有的样本与每一个质心之间的相似度,故在大规模的数据集上,K-Means算法的收敛速度比较慢。
目录
相关文章
|
11天前
|
数据采集 机器学习/深度学习 算法
【优秀设计案例】基于K-Means聚类算法的球员数据聚类分析设计与实现
本文通过K-Means聚类算法对NBA球员数据进行聚类分析,旨在揭示球员间的相似性和差异性,为球队管理、战术决策和球员评估提供数据支持,并通过特征工程和结果可视化深入理解球员表现和潜力。
【优秀设计案例】基于K-Means聚类算法的球员数据聚类分析设计与实现
|
12天前
|
数据采集 算法 数据可视化
基于Python的k-means聚类分析算法的实现与应用,可以用在电商评论、招聘信息等各个领域的文本聚类及指标聚类,效果很好
本文介绍了基于Python实现的k-means聚类分析算法,并通过微博考研话题的数据清洗、聚类数量评估、聚类分析实现与结果可视化等步骤,展示了该算法在文本聚类领域的应用效果。
|
2天前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】机器学习的基本概念、算法的工作原理、实际应用案例
机器学习是人工智能的一个分支,它使计算机能够在没有明确编程的情况下从数据中学习并改进其性能。机器学习的目标是让计算机自动学习模式和规律,从而能够对未知数据做出预测或决策。
7 2
|
9天前
|
机器学习/深度学习 数据采集 人工智能
理解并应用机器学习算法:从技术基础到实践应用
【8月更文挑战第10天】机器学习算法的应用已经深入到我们生活的方方面面,理解和掌握机器学习算法对于数据科学家、工程师乃至普通从业者来说都至关重要。通过本文的介绍,希望大家能够对机器学习有一个基本的认识,并学会如何将其应用于实际问题中。当然,机器学习是一个不断发展和演变的领域,只有不断学习和实践,才能跟上时代的步伐。
|
11天前
|
机器学习/深度学习 自然语言处理 算法
利用机器学习算法进行自动化测试
利用机器学习算法进行自动化测试
|
12天前
|
机器学习/深度学习 数据采集 数据可视化
基于机器学习的一线城市租房价格预测分析与实现,实现三种算法预测
本文通过数据采集、处理、特征选择和机器学习建模,对一线城市租房价格进行预测分析,比较了随机森林、一元线性回归和多元线性回归模型,并发现随机森林模型在预测租房价格方面表现最佳,为租房市场参与者提供决策支持。
|
12天前
|
算法 数据可视化 搜索推荐
基于python的k-means聚类分析算法,对文本、数据等进行聚类,有轮廓系数和手肘法检验
本文详细介绍了基于Python实现的k-means聚类分析算法,包括数据准备、预处理、标准化、聚类数目确定、聚类分析、降维可视化以及结果输出的完整流程,并应用该算法对文本数据进行聚类分析,展示了轮廓系数法和手肘法检验确定最佳聚类数目的方法。
|
12天前
|
数据采集 自然语言处理 数据可视化
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
|
3月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
184 14
|
3月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

热门文章

最新文章