探索数据的维度:多元线性回归在实际应用中的威力

简介: 探索数据的维度:多元线性回归在实际应用中的威力

🍀引言

当谈到回归分析时,多元线性回归是一个非常强大且常用的工具。它允许我们探索多个自变量与一个因变量之间的关系,并用一条线性方程来表示这种关系。在本文中,我们将深入探讨多元线性回归的概念、应用和解释,以及如何使用统计工具来进行模型的建立和评估。


🍀什么是多元线性回归?

多元线性回归是一种统计方法,用于研究多个自变量与一个连续因变量之间的关系。它基于线性方程的概念,即假设自变量与因变量之间存在线性关系。多元线性回归的数学表达式如下:

Y=β0+β1X1+β2X2+…+βpXp+εY=β0+β1X1+β2X2+…+βpXp+ε

在这个方程中,YY 是因变量,X1,X2,…,XpX1,X2,…,Xp 是自变量,β0,β1,β2,…,βpβ0,β1,β2,…,βp 是回归系数,代表了每个自变量对因变量的影响,εε 是误差项。


🍀多元线性回归的应用

  1. 经济学

在经济学中,多元线性回归可以用来探索多个因素对某一经济指标(如GDP、通货膨胀率)的影响。例如,研究收入、失业率、教育水平等因素对某地区的经济增长的影响。

  1. 医学

医学研究中,可以利用多元线性回归来分析多个生活方式因素(如饮食、运动)与健康指标(如体重、血压)之间的关系,从而预测健康状况。

  1. 市场营销

在市场营销领域,可以使用多元线性回归来分析广告支出、促销活动等因素对销售额的影响,从而优化营销策略。


🍀构建多元线性回归模型的步骤

构建一个有效的多元线性回归模型需要以下步骤:

  1. 数据收集

收集包含因变量和多个自变量的数据集。确保数据质量良好,包括准确性和完整性。

  1. 特征选择

根据领域知识和统计方法,选择对因变量有显著影响的自变量。避免过多的自变量,以防止过拟合。

  1. 拟合模型

使用统计软件(如Python中的Scikit-learn、R等)来拟合多元线性回归模型,估计回归系数。

  1. 模型评估

通过检查回归系数的显著性、模型的拟合优度(如R平方值)等指标来评估模型的质量。

  1. 残差分析

分析模型的残差,检查是否满足回归假设,如误差项的独立性、常数方差等。

  1. 预测与解释

使用模型进行预测,并解释各个自变量对因变量的影响程度。可以通过回归系数的正负来判断自变量的影响方向。

🍀R-squared(R平方)

R-squared(R平方),也称为决定系数(coefficient of determination),是多元线性回归模型中常用的一个统计指标,用于衡量模型对因变量变异性的解释程度。它表示因变量的变异有多少可以被模型所解释。

R-squared的取值范围在0到1之间,其中:

  • 当 R-squared 接近 1 时,表示模型能够很好地解释因变量的变异,即模型拟合度较高,所用的自变量能够很好地解释因变量的波动。
  • 当 R-squared 接近 0 时,表示模型不能够很好地解释因变量的变异,模型可能没有捕捉到数据中的关键模式,或者模型不够适合数据。

R-squared 的计算公式如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
def r2_score(y_true,y_predict):
    return 1-((np.sum((y_true-y_predict)**2)/len(y_true))/np.var(y_true))
x = np.array([1.,2.,3.,4.,5.])
y = np.array([1.,3.,2.,3.,5.])
lin_reg = LinearRegression()
lin_reg.fit(x.reshape(-1,1),y)
y_predict = lin_reg.predict(x.reshape(-1,1))
r2_score(y,y_predict)
lin_reg.score(x.reshape(-1,1),y)

运行结果如下

其中,SSresSSres 是残差平方和(residual sum of squares),表示模型预测值与实际观测值之间的差异的平方和;SStotSStot 是总平方和(total sum of squares),表示实际观测值与因变量均值之间的差异的平方和。

R-squared 的值越接近1,表示模型的拟合效果越好。然而,需要注意的是,R-squared并不是一定越高越好。一个高的R-squared值并不一定意味着模型具有预测能力,因为过拟合问题可能会导致模型在训练数据上表现良好,但在新数据上表现较差。

因此,在解释多元线性回归模型的拟合程度时,需要结合其他评估指标,如调整后的R-squared、残差分析等,来综合评估模型的性能。

🍀多元线性回归案例—波士顿房价

下面我们一步一步分析一下如何使用多元线性回归预测波士顿房价

首先我们需要导入需要的库,并进行实例化

from sklearn.datasets import load_boston
boston.feature_names

之后我们可以查看一下相关的详细信息或者特征值

print(boston.DESCR)
boston.feature_names

这里我们取其中一列

x = boston.data[:,5].reshape(-1,1)
y = boston.target

这两行代码的作用是将波士顿房价数据集中的一个特定特征(第 5 列,例如可能是 “RM”,即每个住宅的平均房间数)作为输入特征 x,将房价作为目标变量 y。这样,您可以使用这些数据来训练机器学习模型,以尝试预测房价(目标变量 y)基于该特定特征(输入特征 x)

接下来我们需要进行一些必要的处理,用来剔除异常值

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
x = x[y<50]
y = y[y<50]
plt.scatter(x,y)

运行结果如下

x = x[y < 50]: 这一行代码通过布尔索引筛选出目标变量 y 小于 50 的样本所对应的输入特征 x。换句话说,它从之前准备的输入特征 x 和目标变量 y 中,保留了那些房价小于 50 的数据点的特征值。这种操作可以用来剔除异常值或不符合问题背景的数据点。

y = y[y < 50]: 这一行代码对目标变量 y 也进行了相同的过滤操作,只保留了与之前筛选出的输入特征 x 对应的目标变量值。

接下来我们要进行切割数据集,分为训练集和测试集,之后我们进行拟合得到R^2

x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=666)
lin_reg = LinearRegression()
lin_reg.fit(x_train,y_train)
lin_reg.score(x_test,y_test)

运行结果如下

这里我们打印看看系数和截距

最后我们可以通过一条直线得到

plt.plot(x,lin_reg.predict(x),color='r')
plt.scatter(x,y)
plt.show()

运行结果如下

以上我们只考虑的一列,现在我们我们开始上真家伙

和上面类似

X = boston.data
y1 = boston.target
X = X[y1<50]
y1 = y1[y1<50]
X_train,X_test,y_train,y_test = train_test_split(X,y1,random_state=666)
lin_reg1 = LinearRegression()
lin_reg1.fit(X_train,y_train)
lin_reg1.score(X_test,y_test)

这里我们再打印系数和截距看看

普通的线性回复只有一个特征值,所以只有一个系数,多元线性回归有多个系数

最后我们可以看看哪个特征对整体影响大写

boston.feature_names[np.argsort(lin_reg1.coef_)]

运行结果如下

在波士顿房价数据集中,“NOX” 是一个代表一氧化氮浓度的特征。这个特征描述了一个地区的空气质量,即一氧化氮的浓度。在数据集中,“NOX” 的值是以浓度为单位的数值,表示在该地区的环境中一氧化氮的浓度水平。

挑战与创造都是很痛苦的,但是很充实。


相关文章
|
9天前
|
数据挖掘 Python
时间序列分析中的互相关与相干性分析:前导-滞后关系的理论基础与实际应用
时间序列数据在现代数据分析中广泛应用,从金融市场到生物医学领域。本文重点介绍两种分析工具:互相关和相干性分析。互相关用于量化两个时间序列的时域关系,揭示前导-滞后关系;相干性分析则评估信号在频率域的相关性,适用于脑电图等研究。通过实际案例和Python代码示例,展示了这两种方法的应用价值。
81 8
时间序列分析中的互相关与相干性分析:前导-滞后关系的理论基础与实际应用
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
86 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
7月前
|
机器学习/深度学习 人工智能 算法
社交网络分析4(上):社交网络链路预测分析、Logistic回归模型、LLSLP方法(LightGBM 堆叠链路预测)、正则化方法、多重共线性
社交网络分析4(上):社交网络链路预测分析、Logistic回归模型、LLSLP方法(LightGBM 堆叠链路预测)、正则化方法、多重共线性
524 0
社交网络分析4(上):社交网络链路预测分析、Logistic回归模型、LLSLP方法(LightGBM 堆叠链路预测)、正则化方法、多重共线性
|
5月前
|
资源调度 数据可视化 算法
贝叶斯统计是一种基于贝叶斯定理的统计学方法,它不同于传统的频率派统计(或称为经典统计)。
贝叶斯统计是一种基于贝叶斯定理的统计学方法,它不同于传统的频率派统计(或称为经典统计)。
|
7月前
|
数据可视化 语音技术
时间序列分析实战(三):时序因素分解法
时间序列分析实战(三):时序因素分解法
|
7月前
|
机器学习/深度学习 数据可视化 算法
R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据
R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据
|
7月前
|
运维 算法 C++
R语言用LOESS(局部加权回归)季节趋势分解(STL)进行时间序列异常检测
R语言用LOESS(局部加权回归)季节趋势分解(STL)进行时间序列异常检测
|
7月前
|
数据可视化 数据建模
R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系
R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系
|
7月前
|
定位技术 计算机视觉 Windows
R语言生态学建模:增强回归树(BRT)预测短鳍鳗生存分布和影响因素
R语言生态学建模:增强回归树(BRT)预测短鳍鳗生存分布和影响因素
|
7月前
|
数据可视化 数据挖掘
R语言混合线性模型、多层次模型、回归模型分析学生平均成绩GPA和可视化
R语言混合线性模型、多层次模型、回归模型分析学生平均成绩GPA和可视化