Filebeat日志采集器实例 1

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: Filebeat日志采集器实例

1 概述

Beats是用于单用途数据托运人的平台。它们以轻量级代理的形式安装,并将来自成百上千台机器的数据发送到Logstash或Elasticsearch。(通俗地理解,就是采集数据,并上报到Logstash或Elasticsearch)


Beats对于收集数据非常有用。它们位于你的服务器上,将数据集中在Elasticsearch中,Beats也可以发送到Logstash来进行转换和解析。


为了捕捉(捕获)数据,Elastic提供了各种Beats(如Filebeat):

ab6b264b645a45f091e34153637e593b.png

2 安装Filebeat

https://www.elastic.co/cn/beats/filebeat

https://www.elastic.co/cn/downloads/beats/filebeat

2.1 配置Filebeat

配置文件:filebeat.yml

为了配置Filebeat:

1. 定义日志文件路径

对于最基本的Filebeat配置,你可以使用单个路径。例如:

filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /var/log/*.log

在这个例子中,获取在/var/log/*.log路径下的所有文件作为输入,这就意味着Filebeat将获取/var/log目录下所有以.log结尾的文件。


为了从预定义的子目录级别下抓取所有文件,可以使用以下模式:/var/log//.log。这将抓取/var/log的子文件夹下所有的以.log结尾的文件。它不会从/var/log文件夹本身抓取。目前,不可能递归地抓取这个目录下的所有子目录下的所有.log文件。


(假设配置的输入路径是/var/log//.log,假设目录结构是这样的


9a94ea100d9e10337398d277229f59c7.png

那么只会抓取到2.log和3.log,而不会抓到1.log和4.log。因为/var/log/aaa/ccc/1.log和/var/log/4.log不会被抓到。


2. 如果你发送输出目录到Elasticsearch(并且不用Logstash),那么设置IP地址和端口以便能够找到Elasticsearch:

output.elasticsearch:
    hosts: ["192.168.1.42:9200"]

3. 如果你打算用Kibana仪表盘,可以这样配置Kibana端点:

setup.kibana:
      host: "localhost:5601"

4. 如果你的Elasticsearch和Kibana配置了安全策略,那么在你启动Filebeat之前需要在配置文件中指定访问凭据。例如:

output.elasticsearch:
      hosts: ["myEShost:9200"]
      username: "filebeat_internal"
      password: "{pwd}" 
setup.kibana:
      host: "mykibanahost:5601"
      username: "my_kibana_user"  
      password: "{pwd}"

2.2 配置Filebeat以使用Logstash

如果你想使用Logstash对Filebeat收集的数据执行额外的处理,那么你需要将Filebeat配置为使用Logstash。

output.logstash:
      hosts: ["127.0.0.1:5044"]

3 案例

我们将前面所学习到的Elasticsearch + Logstash + Beats + Kibana整合起来做一个综合性的练习,目的就是能够更加深刻的理解Elastic Stack的使用。

3.1 流程说明

应用APP生产日志,用来记录用户的操作

[INFO] 2019-03-15 22:55:20 [Main] - DAU|5206|使用优惠券|2019-03-15 03:37:20

[INFO] 2019-03-15 22:55:21 [Main] - DAU|3880|浏览页面|2019-03-15 07:25:09

通过Filebeat读取日志文件中的内容,并且将内容发送给Logstash,原因是需要对内容做处理

Logstash接收到内容后,进行处理,如分割操作,然后将内容发送到Elasticsearch中

Kibana会读取Elasticsearch中的数据,并且在Kibana中进行设计Dashboard,最后进行展示

说明:日志格式、图表、Dashboard都是自定义的

3.2 日志环境介绍

APP在生产环境应该是真实系统,然而,现在我们学习的话,为了简化操作,所以就做数据的模拟生成即可。

业务代码如下:

package com.log;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.RandomUtils;
import org.joda.time.DateTime;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@Slf4j
@SpringBootApplication
public class Main {
    public static final String[] VISIT = new String[]{"浏览页面", "评论商品", "加入收藏", "加入购物车", "提交订单", "使用优惠券", "领取优惠券", "搜索", "查看订单"};
    public static void main(String[] args) throws Exception {
        while(true){
            Long sleep = RandomUtils.nextLong(200, 1000 * 5);
            Thread.sleep(sleep);
            Long maxUserId = 9999L;
            Long userId = RandomUtils.nextLong(1, maxUserId);
            String visit = VISIT[RandomUtils.nextInt(0, VISIT.length)];
            DateTime now = new DateTime();
            int maxHour = now.getHourOfDay();
            int maxMillis = now.getMinuteOfHour();
            int maxSeconds = now.getSecondOfMinute();
            String date = now.plusHours(-(RandomUtils.nextInt(0, maxHour)))
                    .plusMinutes(-(RandomUtils.nextInt(0, maxMillis)))
                    .plusSeconds(-(RandomUtils.nextInt(0, maxSeconds)))
                    .toString("yyyy-MM-dd HH:mm:ss");
            String result = "DAU|" + userId + "|" + visit + "|" + date;
            log.error(result);
        }
    }
}

我们可以启动运行,就是不断的生成日志,模拟了我们的实际业务

09:18:32.721 [main] ERROR com.log.Main - DAU|8183|加入购物车|2020-09-25 06:10:25
09:18:33.599 [main] ERROR com.log.Main - DAU|7097|提交订单|2020-09-25 06:18:31
09:18:37.265 [main] ERROR com.log.Main - DAU|1468|查看订单|2020-09-25 02:04:10
09:18:39.634 [main] ERROR com.log.Main - DAU|7821|领取优惠券|2020-09-25 02:04:07
09:18:41.909 [main] ERROR com.log.Main - DAU|7962|提交订单|2020-09-25 03:02:39
09:18:43.596 [main] ERROR com.log.Main - DAU|3358|评论商品|2020-09-25 08:14:19

然后我们将该项目使用下面命令进行打包

mvn clean install

打包完成后,到target目录下,能够看到我们生成的jar包

#打包成jar包,在linux上运行
java -jar itcast-dashboard-generate-1.0-SNAPSHOT.jar
#运行之后,就可以将日志写入到/itcast/logs/app.log文件中

3.3 配置Filebeat

在有了不断产生日志的应用程序后,我们就需要创建一个Filebeat的配置文件,用于日志的收集

# 打开配置文件
vim  mogu-dashboard.yml
# 写入数据
filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /soft/app/*.log
setup.template.settings:
  index.number_of_shards: 1
output.logstash:
  hosts: ["127.0.0.1:5044"]

然后我们就可以启动了【需要我们把Logstash启动起来】

./filebeat -e -c mogu-dashboard.yml

3.4 配置Logstash

3.4.1 Logstash输出到控制台

Logstash的主要目的就是处理Filebeat发送过来的数据,进行数据的清洗,过滤等,我们首先简单的将logstash获得的数据输出到控制台

# 打开配置文件
vim  mogu-dashboard.conf
# 添加以下内容
input {
  beats {
    port => "5044"
  }
}
output {
  stdout { codec => rubydebug }
}

然后启动我们的logstash 【注意,启动时间比较长,需要我们等待】

./bin/logstash -f mogu-dashboard.conf

启动logstash完成后,我们需要再次启动filebeat,回到上面的启动步骤,然后就能看到logstash输出我们的日志


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
1月前
|
存储 数据采集 分布式计算
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
44 1
|
2月前
|
Kubernetes API Docker
跟着iLogtail学习容器运行时与K8s下日志采集方案
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
|
2月前
|
设计模式 SQL 安全
PHP中的设计模式:单例模式的深入探索与实践在PHP的编程实践中,设计模式是解决常见软件设计问题的最佳实践。单例模式作为设计模式中的一种,确保一个类只有一个实例,并提供全局访问点,广泛应用于配置管理、日志记录和测试框架等场景。本文将深入探讨单例模式的原理、实现方式及其在PHP中的应用,帮助开发者更好地理解和运用这一设计模式。
在PHP开发中,单例模式通过确保类仅有一个实例并提供一个全局访问点,有效管理和访问共享资源。本文详细介绍了单例模式的概念、PHP实现方式及应用场景,并通过具体代码示例展示如何在PHP中实现单例模式以及如何在实际项目中正确使用它来优化代码结构和性能。
45 2
|
3月前
|
Java 应用服务中间件 HSF
Java应用结构规范问题之AllLoggers接口获取异常日志的Logger实例的问题如何解决
Java应用结构规范问题之AllLoggers接口获取异常日志的Logger实例的问题如何解决
|
3月前
|
Kubernetes Shell 网络安全
【Azure K8S】记录AKS VMSS实例日志收集方式
【Azure K8S】记录AKS VMSS实例日志收集方式
|
3月前
|
存储 Linux 网络安全
【Azure 应用服务】App Service For Linux 如何在 Web 应用实例上住抓取网络日志
【Azure 应用服务】App Service For Linux 如何在 Web 应用实例上住抓取网络日志
|
3月前
|
存储 Kubernetes Java
在k8S中,容器内日志是怎么采集的?
在k8S中,容器内日志是怎么采集的?
|
3月前
|
数据采集 监控 Kubernetes
Job类日志采集问题之iLogtail以减小容器发现和开始采集的延时如何优化
Job类日志采集问题之iLogtail以减小容器发现和开始采集的延时如何优化
|
12天前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
119 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
1月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
220 3