基于 ACK Fluid 的混合云优化数据访问(三):加速第三方存储的读访问,降本增效并行

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 基于 ACK Fluid 的混合云优化数据访问(三):加速第三方存储的读访问,降本增效并行

作者:车漾


前文回顾:

本系列将介绍如何基于 ACK Fluid 支持和优化混合云的数据访问场景,相关文章请参考:

基于 ACK Fluid 的混合云优化数据访问(一):场景与架构

基于 ACK Fluid 的混合云优化数据访问(二):搭建弹性计算实例与第三方存储的桥梁


在前一篇文章《搭建弹性计算实例与第三方存储的桥梁》中,介绍如何通过 ACK Fluid 接入第三方分布式存储,可以实现弹性计算实例 ECI 和 ECS 与云下存储系统之间的访问和数据传输,这实际上解决上云的第一阶段问题:连通性。


而对于生产环境来说,如果云上计算访问云下存储系统变成一种常态,就需要考虑性能、成本和稳定性。比如每年的云上访问线下数据的专线成本是多少?云上计算任务耗时和原有 IDC 计算任务相比是否有明显的落差?以及一旦专线出了问题,如何降低云上计算任务的损失?


在本文中将重点介绍如何加速第三方存储访问,实现更好的性能,更低的成本以及降低对专线稳定性的依赖。



概述


即便云上计算能够以 Kubernetes 的标准化协议 PV 存储卷访问企业的线下存储,也无法避免在性能,成本上的挑战和需求:


  • 数据访问带宽有限和高延时:云上计算访问云下存储带来的数据访问延时和带宽有限,导致高性能计算耗时长,计算资源利用率低
  • 数据冗余读取,网络费用昂贵:深度学习模型的超参调优、自动调参深度学习任务等运行期间会不断重复访问同一数据。但是由于 Kubernetes 原生调度器无法感知数据缓存状态,导致应用调度的结果不佳,缓存无法重用,导致数据重复拉取引入更多外网和专线费用。
  • 线下分布式存储是数据并发访问的瓶颈,而且面临着性能和稳定性方面的挑战:当大规模算力并发访问线下存储且深度学习训练的 IO 压力增大,线下分布式存储很容易成为性能瓶颈。这会对计算任务造成影响,甚至会导致整个计算集群失效。
  • 受网络稳定性影响严重:一旦公共云和数据中心之间网络不够稳定,会导致数据同步出错,应用处于不可用的状态。
  • 数据安全需求:元数据和数据需要保护,不允许够持久化到云盘上。


ACK Fluid 提供了基于 JindoRuntime 的 PV 存储卷通用加速能力,可以支持满足 PVC 的第三方存储简单,快速,安全的获得通过分布式缓存实现数据访问加速能力,可以带来如下好处:


1. 零适配成本:只需要实现 CSI 协议中 PVC 的第三方存储即可以立即使用,无需额外开发。

2. 数据访问性能大幅提升,提升工程效率:

a. 通过基于访问和策略数据预热等手段实现访问云下数据性能等同于数据位于云上计算集群

b. 弹性数据访问带宽应对高并发,数据访问吞吐提升到数百 Gbps,也可以缩容到 0,实现低成本和高吞吐的动态平衡。

c. 数据缓存亲和感知调度避免跨网络数据访问降低延迟

3. 避免热点数据的反复读取,节约网络成本:通过分布式缓存将热点数据持久到云上,减少数据读取,降低网络流量。

4. 以数据为中心的自动化运维实现高效的数据访问,提升运维效率:包括自动化和定时的数据缓存预热,避免反复拉取数据数据。还支持数据缓存扩容,缩容和清理,实现数据缓存的自动化管理。

5. 通过分布式内存缓存避免元数据和数据落盘,更加安全:对于数据安全敏感用户,ACK-Fluid 提供分布式内存缓存一方面性能好,另一方面也避免用户对于数据落盘的担忧。


总结:ACK Fluid 为云上计算访问第三方存储 PVC 提供了开箱即用,高性能,低成本,自动化和无数据落盘的收益。


演示


1. 前提条件

  • 已创建 ACK Pro 版集群,且集群版本为 1.18 及以上。具体操作,请参见创建 ACK Pro 版集群[1]
  • 已安装云原生 AI 套件并部署 ack-fluid 组件。重要:若您已安装开源 Fluid,请卸载后再部署 ack-fluid 组件。
  • 未安装云原生 AI 套件:安装时开启 Fluid 数据加速。具体操作,请参见安装云原生 AI 套件[2]
  • 已安装云原生 AI 套件:在容器服务管理控制台的云原生 AI 套件页面部署 ack-fluid。
  • 已通过 kubectl 连接 ACK 集群。具体操作,请参见通过 kubectl 工具连接集群[3]
  • 已创建需要访问存储系统对应的 PV 存储卷和 PVC 存储卷声明。在 Kubernetes 环境中,不同的存储系统有不同的存储卷创建方式,为保证存储系统与 Kubernetes 集群的连接稳定,请根据对应存储系统的官方文档进行准备。注意:对于混合云场景,为了数据的安全性和性能,建议您将数据访问模式配置为只读。


2. 查询 PV 存储卷和 PVC 存储卷声明的信息

执行如下命令,查询 Kubernetes 中 PV 存储卷和 PVC 存储卷声明的信息。


$ kubectl get pvc,pv


预期输出:


NAME                                          STATUS   VOLUME                          CAPACITY   ACCESS MODES   STORAGECLASS   AGE
persistentvolumeclaim/demo-pvc                Bound    demo-pv                         5Gi        ROX                           19h
NAME                                             CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM                           STORAGECLASS   REASON   AGE
persistentvolume/demo-pv                         30Gi       ROX            Retain           Bound    default/demo-pvc                                        19h


PV存储卷 demo-pv 的容量为 30GB,支持 RWX 访问模式,已被绑定到 PVC 名称为 demo-pvc 的存储卷声明上,均可正常使用。


3. 创建 Dataset 和 JindoRuntime

1)创建 dataset.yaml 文件,以下 Yaml 文件中包含两个待创建的 Fluid 资源对象,分别是 Dataset 和 JindoRuntime

  • Dataset:所需挂载的 PVC 存储卷声明信息。
  • JindoRuntime:待启动的 JindoFS 分布式缓存系统配置,包括缓存系统 Worker 组件副本数,以及每个 Worker 组件最大可用的缓存容量等。


apiVersion: data.fluid.io/v1alpha1
kind: Dataset
metadata:
  name: pv-demo-dataset
spec:
  mounts:
    - mountPoint: pvc://demo-pvc
      name: data
      path: /
  accessModes:
    - ReadOnlyMany
---
apiVersion: data.fluid.io/v1alpha1
kind: JindoRuntime
metadata:
  name: pv-demo-dataset
spec:
  replicas: 2
  tieredstore:
    levels:
      - mediumtype: MEM
        path: /dev/shm
        quota: 10Gi
        high: "0.9"
        low: "0.8"


配置文件中资源对象的详细参数说明如下。



2)执行如下命令,创建 Dataset 和 JindoRuntime 资源对象


$ kubectl create -f dataset.yaml


3)执行如下命令,查看 Dataset 的部署情况


$ kubectl get dataset pv-demo-dataset


预期输出:说明初次启动 JindoFS 缓存系统时涉及镜像拉取过程,因为网络环境等因素的影响,可能需要耗时 2~3 分钟。Dataset 处于 Bound 状态,表明 JindoFS 缓存系统已在集群内正常启动,应用 Pod 可正常访问 Dataset 中定义的数据。


4. 创建 DataLoad 执行缓存预热

由于首次访问无法命中数据缓存,应用 Pod 的数据访问效率可能较低,Fluid 提供了 DataLoad 缓存预热操作提升首次数据访问的效率。


1)创建 dataload.yaml 文件,代码示例如下


apiVersion: data.fluid.io/v1alpha1
kind: DataLoad
metadata:
  name: dataset-warmup
spec:
  dataset:
    name: pv-demo-dataset
    namespace: default
  loadMetadata: true
  target:
    - path: /
      replicas: 1


上述资源对象的详细参数说明如下所示。



2)执行如下命令,创建 DataLoad 对象


$ kubectl create -f dataload.yaml


3)执行如下命令,查看 DataLoad 状态


$ kubectl get dataload dataset-warmup


预期输出:


NAME             DATASET           PHASE      AGE   DURATION
dataset-warmup   pv-demo-dataset   Complete   62s   12s


4)执行如下命令,查看数据缓存状态


$ kubectl get dataset


预期输出:


NAME              UFS TOTAL SIZE   CACHED     CACHE CAPACITY   CACHED PERCENTAGE   PHASE   AGE
pv-demo-dataset   10.96GiB         10.96GiB   20.00GiB         100.0%              Bound   3m13s


DataLoad 缓存预热操作完成后,数据集的已缓存数据量(CACHED)已更新为整个数据集的大小,代表整个数据集已被缓存,缓存百分比(CACHED PERCENTAGE)为 100.0%。


5. 创建应用容器,访问 PV 存储卷中的数据

1)使用如下 YAML,创建 pod.yaml 文件,并修改 YAML 文件中的 claimName 名称与步骤二创建的 Dataset 名称相同


apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  containers:
    - name: nginx
      image: nginx
      command:
      - "bash"
      - "-c"
      - "sleep inf"
      volumeMounts:
        - mountPath: /data
          name: data-vol
  volumes:
    - name: data-vol
      persistentVolumeClaim:
        claimName: pv-demo-dataset # 名称需要与Dataset相同。


2)执行如下命令,创建应用 Pod


$ kubectl create -f pod.yaml


3)执行如下命令,登录 Pod 访问数据


$ kubectl exec -it nginx bash


预期输出:


# Nginx Pod中,/data目录下有一个名为demofile的文件,大小为11 GB。
$ ls -lh /data
total 11G
-rw-r----- 1 root root 11G Jul 28  2023 demofile
# 执行cat /data/demofile > /dev/null命令,将demofile文件中的内容读取并写入/dev/null设备中,用时11.004秒。
$ time cat /data/demofile > /dev/null
real    0m11.004s
user    0m0.065s
sys     0m3.089s


由于数据集中的数据已经全部缓存在了分布式缓存系统中,读取数据时将会从缓存中读取,而不是从远程存储系统中读取,从而减少了网络传输,提升了数据访问效率。


相关链接:

[1] 创建 ACK Pro 版集群

https://help.aliyun.com/zh/ack/ack-managed-and-ack-dedicated/user-guide/create-an-ack-managed-cluster-2#task-skz-qwk-qfb

[2] 安装云原生 AI 套件

https://help.aliyun.com/zh/ack/cloud-native-ai-suite/user-guide/deploy-the-cloud-native-ai-suite#task-2038811

[3] 通过 kubectl 工具连接集群

https://help.aliyun.com/zh/ack/ack-managed-and-ack-dedicated/user-guide/obtain-the-kubeconfig-file-of-a-cluster-and-use-kubectl-to-connect-to-the-cluster#task-ubf-lhg-vdb

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
3月前
|
存储 Kubernetes 容器
Kubernetes 存储选项:持久化卷与存储类
【8月更文第29天】随着容器化的普及,越来越多的应用程序需要持久化数据以保持状态信息。Kubernetes 提供了一套完整的解决方案来管理和配置持久化存储,包括持久卷 (Persistent Volume, PV)、持久卷声明 (Persistent Volume Claim, PVC) 和存储类 (StorageClass)。本文将详细介绍这些概念,并通过实际示例来演示如何在 Kubernetes 中配置存储。
291 1
|
26天前
|
存储 Kubernetes 监控
深度解析Kubernetes在微服务架构中的应用与优化
【10月更文挑战第18天】深度解析Kubernetes在微服务架构中的应用与优化
97 0
|
2月前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
|
3月前
|
存储 Kubernetes 容器
k8s创建NFS动态存储
k8s创建NFS动态存储
|
3月前
|
存储 Kubernetes Cloud Native
告别数据丢失的噩梦!PersistentVolume全攻略,让你轻松玩转Kubernetes数据持久化秘籍!
【8月更文挑战第25天】随着容器技术的发展,Kubernetes已成为云原生应用的主流部署平台。然而,数据持久化成为一个亟待解决的问题。Kubernetes通过PersistentVolume(PV)提供了解决方案。PV是一种存储资源对象,它抽象出底层存储技术(例如Ceph、GlusterFS或NFS),让用户仅需关注存储容量和访问模式等属性。PV由管理员创建与维护,Pod通过PersistentVolumeClaim(PVC)请求存储资源。本文详细介绍了PV的工作原理、配置方法及示例,帮助读者更好地理解和应用此功能。
129 2
|
3月前
|
存储 Kubernetes 安全
在K8S中,你用的flannel是哪个工作模式及fannel的底层原理如何实现数据报文转发的?
在K8S中,你用的flannel是哪个工作模式及fannel的底层原理如何实现数据报文转发的?
|
3月前
|
C# Windows 开发者
超越选择焦虑:深入解析WinForms、WPF与UWP——谁才是打造顶级.NET桌面应用的终极利器?从开发效率到视觉享受,全面解读三大框架优劣,助你精准匹配项目需求,构建完美桌面应用生态系统
【8月更文挑战第31天】.NET框架为开发者提供了多种桌面应用开发选项,包括WinForms、WPF和UWP。WinForms简单易用,适合快速开发基本应用;WPF提供强大的UI设计工具和丰富的视觉体验,支持XAML,易于实现复杂布局;UWP专为Windows 10设计,支持多设备,充分利用现代硬件特性。本文通过示例代码详细介绍这三种框架的特点,帮助读者根据项目需求做出明智选择。以下是各框架的简单示例代码,便于理解其基本用法。
163 0
|
3月前
|
Kubernetes Cloud Native 应用服务中间件
Kubernetes 自动伸缩策略:优化资源利用率
【8月更文第29天】在现代云原生环境中,应用的流量往往具有不可预测性。为了应对这种变化,Kubernetes 提供了多种自动伸缩机制来动态调整应用实例的数量和每个实例分配的资源。本文将深入探讨两种主要的自动伸缩工具:水平 Pod 自动伸缩器 (HPA) 和垂直 Pod 伸缩器 (VPA),并提供实际的应用示例。
98 0
|
3月前
|
存储 Kubernetes 调度
在K8S中,是怎么实现数据持久化的?
在K8S中,是怎么实现数据持久化的?
|
3月前
|
存储 Kubernetes 监控
在K8S中,集群可以做哪些优化?
在K8S中,集群可以做哪些优化?

相关产品

  • 容器服务Kubernetes版