云原生网关可观测性综合实践

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 云原生网关可观测性综合实践

作者:钰诚


可观测性


可观测性(Observability)是指系统、应用程序或服务的运行状态、性能和行为能够被有效地监测、理解和调试的能力。


随着系统架构从单体架构到集群架构再到微服务架构的演进,业务越来越庞大,也越来越复杂。云原生时代背景下,随着微服务、Service Mesh、 Serverless 等新技术的出现,业务的复杂度很快就超过了个人的极限,可观测性在现代分布式系统的设计和运维中变得越来越重要。传统的监控和告警方法往往只关注系统的一些基本指标,而忽略了更细粒度的信息和上下文。可观测性的目标是通过全面的数据收集和分析,提供更深入和全面的洞察力,使运维和开发人员能够更好地理解系统的行为、排查问题、预测性能瓶颈和应对故障。


日志、指标和分布式追踪被称为可观测性的三大支柱:

  1. 日志(Logging):日志是记录系统运行过程中产生的事件和信息的记录。通过记录应用程序的日志,可以了解系统的运行状态、错误和异常信息,方便故障排查和系统分析。常见的日志系统包括 ELK(Elasticsearch、Logstash、Kibana)和 Splunk 等。
  2. 指标(Metrics):指标是用于衡量系统各个方面性能的度量标准。通过采集和记录指标数据,可以实时监控系统的运行情况,包括 CPU 使用率、内存占用、请求响应时间等。常用的指标系统有 Prometheus 和 InfluxDB 等。
  3. 分布式追踪(Distributed Tracing):分布式追踪是用于跟踪和监控分布式系统中请求的路径和性能的技术。通过将请求在系统中的不同组件之间传递一个唯一标识符,可以追踪请求的流程和耗时,帮助分析和优化系统性能。常见的分布式追踪系统有 Zipkin 和 Apache Skywalking 等。


通过提供全面且精确的可观测性,系统的开发和运维人员可以更快速地发现问题、理解系统行为,并做出相应的优化和决策,从而提高系统的性能、稳定性和可靠性。


云原生网关可观测体系


MSE 云原生网关依托阿里云现有的云产品(日志服务 SLS、应用实时监控服务 ARMS)以及对开源软件的良好支持构建了丰富的可观测体系,为用户提供了强大的日志、监控、链路追踪以及告警功能,功能大图如下所示:



网关的可观测性能力致力于帮助客户构建产品的可靠性体验,为客户提供故障发现与故障定位的能力,减少故障的发生以及降低故障的影响面。基于网关的监控与告警管理功能,实现故障的及时发现与通知到客户;基于监控与日志,实现故障的快速定位;基于链路追踪,实现请求调用的全链路故障根因排查。


云原生网关可观测实践


过程概览

本文将依据下图中标注的功能模块出发,帮助读者体验网关可观测性在故障发现与故障定位中的能力。



整体流程如下图所示:

  1. 用户收到网关发出的告警
  2. 用户查看 prometheus 监控找到出问题的路由、服务
  3. 用户查看 SLS 日志获取更详细的报错信息
  4. 用户通过链路追踪排故障的根因




测试环境架构概览



本文在 ACK 集群中部署了一系列 Springboot 的服务,调用关系如上图所示,其中 Spring SVC 4-2 发生了 crash。通过网关接入 ACK 集群,创建路由如下:



测试过程中会通过以下三种请求去访问网关:

  1. 正常的请求,网关路由到 httpbin
  2. 在网关处就返回错误的请求,本文使用无法命中路由的请求
  3. 在上游服务返回错误的请求,网关路由到 Spring SVC 1


此时网关的错误率会出现明显上升。


故障发现与定位过程

通过告警策略及时发现故障

首先配置网关的告警策略,从网关实例粒度设置告警规则与通知策略,本文中采用了邮件通知的方式,除此之外还有电话、短信等方式。配置告警策略的示例如下图所示:



通过以下邮件信息可以得知网关出现了故障:



通过 Arms Prometheus 监控初步定位问题

接下来,查看网关观测分析->业务监控->全局看板的错误信息概览板块,当前监控信息如下:



根据图中内容,可以得到以下信息:

  1. “网关粒度失败率”看板中,网关整体失败率是大于上游服务失败率的,这意味着一部分请求在网关处返回了错误码,一部分请求在上游服务处返回了错误码
  2. “路由粒度失败率”看板中,能够看到只有路由名称为 “spring” 的路由失败率不是 0
  3. “上游服务粒度失败率”看板中,能够看到只有服务名称为 “springboot-svc-1.app-system.svc.cluster.local” 的服务失败率不是 0


点击图中“路由失败请求数排行”或者“上游服务失败请求数排行”中的路由名或者服务名可以查看路由或者服务的详细信息。


路由名为 “spring” 的路由监控信息如下图所示:



服务名为 “springboot-svc-1.app-system.svc.cluster.local” 的服务监控信息如下图所示:



上图中显示出现错误的路由和服务返回的错误码为 5xx,至此,已经初步定位到问题所在:路由 “spring” 指向的上游服务 “springboot-svc-1.app-system.svc.cluster.local” 出现了问题。


但是,目前还有两个问题需要解决:

  1. 在网关处返回错误的请求是什么原因?
  2. 服务 “springboot-svc-1.app-system.svc.cluster.local” 的错误是什么原因造成的?

通过 SLS 网关日志获取详细信息

接下来通过网关日志中心的 SLS 日志获取更详细的信息。



首先点击 response_code,此时会自动生成查询请求,可以看到这段时间内网关的响应码只有三种:200,404,500。在网关问题排查页面,输入响应码,可以查看错误码可能的原因:



可以看到返回 404 响应码的原因是没有命中路由导致。类似的,当选择响应码为 500 时,可以看到相应的路由名以及服务名,如下图所示:



通过问题排查工具可以看到,错误是后端服务造成的:



到现在为止,只剩下一个问题:服务 “springboot-svc-1.app-system.svc.cluster.local” 的错误根因是什么?

通过 Arms xtrace 链路追踪分析调用链

借助于链路追踪技术,可以获取更细粒度的错误信息。只需要简单的配置,网关即可接入 Arms xtrace:



ACK 集群上的 Java 应用按照以下文档进行配置:为容器服务 Kubernetes 版 Java 应用安装探针[1]



在 SLS 日志中找到一条错误请求的 traceid,根据 traceid 在链路追踪页面搜索相应的调用链路分析调用链路错误的根因:



从链路追踪结果看,故障根因是 springboot-svc-4-2 服务错误,至此,一次完整的故障发现与故障定位已经完成。


总结


本次通过云原生网关可观测性进行故障发现和故障定位的实践过程中,首先通过网关的告警策略将故障通知到用户,然后通过 arms 提供的 prometheus 监控服务初步定位到出现故障的路由以及服务,之后通过 SLS 日志服务提供的网关的结构化日志进行查询分析,排查出部分错误是客户端请求路径错误导致,最后通过链路追踪对服务调用链路进行分析,最终成功对故障根因进行定位。


加入 Higress 社区



相关链接:

[1] 为容器服务 Kubernetes 版 Java 应用安装探针

https://help.aliyun.com/zh/arms/application-monitoring/getting-started/install-arms-agent-for-java-applications-deployed-in-ack?spm=a2c4g.11186623.0.i6#arms-cs-k8s-java

相关实践学习
部署高可用架构
本场景主要介绍如何使用云服务器ECS、负载均衡SLB、云数据库RDS和数据传输服务产品来部署多可用区高可用架构。
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
2月前
|
缓存 Java API
【云原生】Spring Cloud Gateway的底层原理与实践方法探究
【云原生】Spring Cloud Gateway的底层原理与实践方法探究
|
2月前
|
运维 网络协议 安全
长连接网关技术专题(十):百度基于Go的千万级统一长连接服务架构实践
本文将介绍百度基于golang实现的统一长连接服务,从统一长连接功能实现和性能优化等角度,描述了其在设计、开发和维护过程中面临的问题和挑战,并重点介绍了解决相关问题和挑战的方案和实践经验。
85 1
|
4月前
|
存储 SQL Cloud Native
深入了解云原生数据库CockroachDB的概念与实践
作为一种全球领先的分布式SQL数据库,CockroachDB以其高可用性、强一致性和灵活性等特点备受关注。本文将深入探讨CockroachDB的概念、设计思想以及实践应用,并结合实例演示其在云原生环境下的优越表现。
|
2月前
|
Cloud Native 安全 持续交付
构建未来:云原生架构的演进与实践
【2月更文挑战第30天】 随着数字化转型的深入,企业对于信息技术的需求日益复杂化和动态化。传统的IT架构已难以满足快速迭代、灵活扩展及成本效率的双重要求。云原生技术作为解决这一矛盾的关键途径,通过容器化、微服务、持续集成/持续部署(CI/CD)等手段,实现了应用的快速开发、部署及运维。本文将探讨云原生架构的最新发展,分析其如何助力企业构建更加灵活、高效的业务系统,并结合实际案例,展示云原生转型过程中的最佳实践和面临的挑战。
|
2天前
|
Kubernetes 监控 Cloud Native
构建未来:云原生架构的演进与实践
【4月更文挑战第30天】 随着数字化转型的不断深入,企业对IT基础设施的要求日益提高。云原生技术以其独特的弹性、可扩展性和敏捷性成为推动现代应用开发的关键动力。本文将探讨云原生架构的核心组件、实施策略以及面临的挑战,旨在为读者提供一个关于如何有效构建和部署云原生应用的全面视角。
|
2天前
|
Cloud Native Devops 持续交付
构建未来应用:云原生架构在现代企业中的实践与挑战
【4月更文挑战第29天】 随着数字化转型的加速,企业正迅速转向云计算以支撑其业务敏捷性和创新。云原生技术,作为推动这一转型的关键因素,正在重新定义软件开发和运维模式。本文将深入探讨云原生架构的核心组件,包括容器化、微服务、持续集成/持续部署(CI/CD)以及DevOps文化,并分析这些技术如何帮助企业实现弹性、可扩展和高效的应用部署。同时,我们将讨论在采纳云原生实践中所面临的挑战,包括安全性、治理和人才缺口等问题。
|
2天前
|
运维 Cloud Native Devops
构建未来应用:云原生架构的演进与实践
【4月更文挑战第29天】在数字化转型的浪潮中,企业亟需灵活、高效的技术支撑来应对市场的快速变化。云原生架构以其独特的设计理念和技术栈,成为推动这一变革的关键力量。本文深入探讨了云原生的核心概念、关键技术和实施策略,旨在为企业提供一个清晰的云原生转型蓝图,助力其构建更加动态、可扩展的应用系统。
|
3天前
|
Kubernetes Cloud Native 持续交付
构建未来:云原生架构在现代企业中的应用与实践
【4月更文挑战第29天】 随着数字化转型的浪潮席卷各行各业,企业对于信息技术基础设施的要求日益提高。传统的IT架构已难以满足快速迭代、灵活扩展和持续创新的需求。本文聚焦于云原生架构,一种为云计算环境量身打造的设计理念和技术集合,旨在帮助企业构建更加灵活、可靠和高效的系统。通过对云原生核心组件的解析、实施策略的探讨以及成功案例的分析,我们揭示了云原生架构如何助力企业在竞争激烈的市场中保持领先地位。
|
7天前
|
人工智能 边缘计算 Cloud Native
云原生架构的未来展望与实践挑战
【4月更文挑战第24天】在数字化转型的浪潮中,云原生架构以其高度灵活、可扩展的特点成为企业技术战略的核心。本文深入探讨了云原生技术的最新发展趋势,分析了在实际部署和运维过程中面临的挑战,并提出了相应的解决方案。通过实例分析,本文旨在为企业实施云原生架构提供参考和指导。
|
8天前
|
Cloud Native Devops 持续交付
构建未来:云原生技术在现代IT架构中的演进与实践
【4月更文挑战第24天】 随着企业数字化转型的深入,云原生技术正成为推动创新和敏捷性的关键技术。本文聚焦于云原生技术的发展历程及其在现代IT架构中的应用,探讨了如何利用容器化、微服务、DevOps和持续集成/持续部署(CI/CD)等核心概念来优化资源利用率,提高系统弹性,并加速产品上市时间。通过分析多个行业案例,文章揭示了云原生实践对企业竞争力的显著影响,并提出了面向未来的IT架构战略建议。