2017双11技术揭秘—阿里巴巴数据库技术架构演进

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
注册配置 MSE Nacos/ZooKeeper,118元/月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: 每年电商双11大促对阿里技术人都是一次大考,对阿里数据库团队更是如此。经过9年的发展,双11单日交易额从2009年的0.5亿一路攀升到2017年的1682亿,秒级交易创建峰值达到了32.5万笔/秒。支撑这一切业务指标的背后,是底层技术体系的一次次迭代升级。

作者:谌文涛(俞月)

每年电商双11大促对阿里技术人都是一次大考,对阿里数据库团队更是如此。经过9年的发展,双11单日交易额从2009年的0.5亿一路攀升到2017年的1682亿,秒级交易创建峰值达到了32.5万笔/秒。支撑这一切业务指标的背后,是底层技术体系的一次次迭代升级。

阿里巴巴数据库系统经历了10多年的发展,今年正式确定从 第三代大规模分库分表 向 第四代X-DB分布式数据库系统 演进的目标。X-DB分布式数据库的落地已经在2017年双11大促中获得了可行性验证,同时底层开始引入存储计算分离架构。分布式在系统稳定性、容灾能力、容量扩展性、技术体系内聚性上有了质的提升,今年双11开启了阿里数据库技术架构新的篇章。

本文以阿里电商交易链路中的核心系统库存中心为例,一窥阿里集团数据数据库的发展历程。库存中心数据库集群(简称库存DB集群),从2012年独立拆分后,其发展可以概括为以下3个阶段:

  • 2012~2013年:分库分表水平拆分,构建大规模数据库集群
  • 2014~2016年:单元化异地多活架构,数据多单元间同步
  • 2017年:X-DB 1.0分布式集群部署上线,新的起点

作为阿里数据库体系中的核心系统,库存DB集群的发展历程可以作为缩影,代表了阿里巴巴数据库体系的演进。

诞生

库存DB集群诞生于2012年,是业务垂直拆分的产物。库存最早是商品中心数据库的一个字段,随着淘宝业务的复杂化,单一字段已经满足不了基于后端仓储的库存管理体系,所以便有了垂直拆分出来的库存DB集群。

水平拆分

2012~2017年,双11交易额一步步的刷新纪录,库存DB集群的QPS/TPS也实现了几十倍的增长。水平拆分的基本思路是把数据库扩展到多个物理节点上,让每个节点处理不同的读写请求,从而缓解单一数据库的性能问题。

借助于数据库团队的DTS(Data Transmission Service)产品,库存中心进行了大规模的水平拆分,分库和分表数量扩展到最初的几百倍,平稳的支撑了这一个阶段业务的快速发展。与此同时,在热点商品扣减、防超卖数据强一致需求、跨城异地容灾数据质量问题、业务数据量急剧膨胀、超大规模数据库集群运维等问题点上,迫切需要新一代架构来解决。

异地多活单元化

2014~2015年,为了进一步提升用户的购物体验,库存DB集群与主站交易链路一同做了单元化部署。单元化很大程度上解决了买家的使用体验问题,在本单元内封闭完成读写操作。但是对于卖家维度的数据,比如编辑商品、扣减库存,就会涉及到跨单元中心去写。关于单元化架构,之前已经有了很多介绍。

有了多个单元,对于底层数据库来说,面临的最大挑战就是数据同步,因为对于单元封闭的买家维度的数据,需要把单元的数据全部同步到中心;对于读写分离类型的业务,我们要把中心的数据同步到单元。这条数据通道就是依靠DRC(Data Replication Center)来完成。

如今,DRC不仅成为集团单元化链路的基础设施,对应的云产品DTS已经从2016年开始让阿里云用户、聚石塔商家低成本的搭建异地容灾。单元化架构给库存DB集群带来的最大挑战是多单元间的数据强一致问题,我们也为此做了很大的努力。

X-DB分布式集群

2017年双11,库存DB集群第一次使用X-DB 1.0分布式集群部署,平稳的支持了32.5万笔/秒的交易创建峰值。X-DB是阿里巴巴自研高性能分布式可全球化部署数据库,其核心技术目标概括为以下6点:

  • 100%兼容MySQL生态,应用无缝迁移
  • 跨AZ、Region的全球化部署能力,5个9以上的可用率
  • 自动化的数据Sharding,计算、存储均可水平扩展
  • 高性能的事务处理,相同硬件下达到MySQL 10倍的事务处理能力,百万TPS
  • 自动化的数据冷热分离,存储成本为MySQL的1/10
  • 计算存储分离,存储按需扩展

库存DB集群双十一部署架构:

正是由于X-DB提供了全面兼容MySQL、高性能、低成本、跨城容灾、数据强一致的能力。在2017年年初,数据库团队和业务研发团队确定了在库存中心部署X-DB 1.0的目标,解决业务目前面临的痛点:

  1. 全面兼容MySQL,实现业务系统平滑迁入
  2. 极致性能,双11单实例热点扣减峰值TPS是去年的3倍
  3. 低成本,相比于传统的单元化主备架构部署,减少2个数据副本以及单元间数据同步资源成本
  4. 跨城容灾,借助Batching和Pipelining技术实现跨城强同步场景吞吐量几乎无衰减
  5. 数据强一致,借助Paxos协议提供多单元间数据强一致能力;批量关闭中心集群全部实例,集群30秒内完成单元选主切换,数据零丢失
  6. 计算存储分离,彻底解决传统机型计算资源和存储资源固定配比问题,搭配容器化技术,大促峰值期间将数据库弹性部署运行在离线任务主机,落地零扩容成本支持双十一大促

X-DB首次亮相在2017年双11的舞台,平稳支撑零点峰值32.5万笔/秒,开启了阿里数据库体系从分库分表时代向分布式集群时代的大门。技术之路永无止境,我们今天的技术现状离业务对我们的要求还有很大的差距。但是千里之行,始于足下,借用《魔戒》里的经典台词:“There’s some good in this world, Mr. Frodo. And it’s worth fighting for.”

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
10天前
|
机器学习/深度学习 安全 算法
十大主流联邦学习框架:技术特性、架构分析与对比研究
联邦学习(FL)是保障数据隐私的分布式模型训练关键技术。业界开发了多种开源和商业框架,如TensorFlow Federated、PySyft、NVFlare、FATE、Flower等,支持模型训练、数据安全、通信协议等功能。这些框架在灵活性、易用性、安全性和扩展性方面各有特色,适用于不同应用场景。选择合适的框架需综合考虑开源与商业、数据分区支持、安全性、易用性和技术生态集成等因素。联邦学习已在医疗、金融等领域广泛应用,选择适配具体需求的框架对实现最优模型性能至关重要。
173 79
十大主流联邦学习框架:技术特性、架构分析与对比研究
|
6天前
|
机器学习/深度学习 缓存 自然语言处理
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
DeepSeekMoE是一种创新的大规模语言模型架构,融合了专家混合系统(MoE)、多头潜在注意力机制(MLA)和RMSNorm归一化。通过专家共享、动态路由和潜在变量缓存技术,DeepSeekMoE在保持性能的同时,将计算开销降低了40%,显著提升了训练和推理效率。该模型在语言建模、机器翻译和长文本处理等任务中表现出色,具备广泛的应用前景,特别是在计算资源受限的场景下。
181 29
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
|
3天前
|
人工智能 JavaScript 安全
【01】Java+若依+vue.js技术栈实现钱包积分管理系统项目-商业级电玩城积分系统商业项目实战-需求改为思维导图-设计数据库-确定基础架构和设计-优雅草卓伊凡商业项目实战
【01】Java+若依+vue.js技术栈实现钱包积分管理系统项目-商业级电玩城积分系统商业项目实战-需求改为思维导图-设计数据库-确定基础架构和设计-优雅草卓伊凡商业项目实战
40 13
【01】Java+若依+vue.js技术栈实现钱包积分管理系统项目-商业级电玩城积分系统商业项目实战-需求改为思维导图-设计数据库-确定基础架构和设计-优雅草卓伊凡商业项目实战
|
3天前
|
机器学习/深度学习 算法 文件存储
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
23 10
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
|
2天前
|
SQL 存储 关系型数据库
【SQL技术】不同数据库引擎 SQL 优化方案剖析
不同数据库系统(MySQL、PostgreSQL、Doris、Hive)的SQL优化策略。存储引擎特点、SQL执行流程及常见操作(如条件查询、排序、聚合函数)的优化方法。针对各数据库,索引使用、分区裁剪、谓词下推等技术,并提供了具体的SQL示例。通用的SQL调优技巧,如避免使用`COUNT(DISTINCT)`、减少小文件问题、慎重使用`SELECT *`等。通过合理选择和应用这些优化策略,可以显著提升数据库查询性能和系统稳定性。
29 9
|
15天前
|
存储 缓存 关系型数据库
社交软件红包技术解密(六):微信红包系统的存储层架构演进实践
微信红包本质是小额资金在用户帐户流转,有发、抢、拆三大步骤。在这个过程中对事务有高要求,所以订单最终要基于传统的RDBMS,这方面是它的强项,最终订单的存储使用互联网行业最通用的MySQL数据库。支持事务、成熟稳定,我们的团队在MySQL上有长期技术积累。但是传统数据库的扩展性有局限,需要通过架构解决。
54 18
|
23天前
|
存储 运维 OLAP
【Meetup回顾 第1期】竟是这样的国产数据库,YashanDB技术内幕曝光
YashanDB是一款基于统一内核,支持单机/主备、共享集群、分布式等多种部署方式,覆盖OLTP/HTAP/OLAP交易和分析混合负载场景的新型数据库系统;YashanDB同时提供开发平台、运维平台和迁移平台3大工具平台以满足数据全生命周期管理。
31 2
【Meetup回顾 第1期】竟是这样的国产数据库,YashanDB技术内幕曝光
|
30天前
|
关系型数据库 分布式数据库 数据库
1月17日|阿里云云谷园区,PolarDB V2.0技术沙龙,畅聊国产数据库
为了助力国产化项目顺利推进,阿里云邀请企业开发者和数据库负责人到云谷园区,与PolarDB V2.0技术专家面对面交流。扫描海报二维码报名,我们将根据信息为您申请入园。欢迎参与,共同探讨PolarDB的最新技术和应用!
|
1月前
|
监控 JavaScript 数据可视化
建筑施工一体化信息管理平台源码,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
智慧工地云平台是专为建筑施工领域打造的一体化信息管理平台,利用大数据、云计算、物联网等技术,实现施工区域各系统数据汇总与可视化管理。平台涵盖人员、设备、物料、环境等关键因素的实时监控与数据分析,提供远程指挥、决策支持等功能,提升工作效率,促进产业信息化发展。系统由PC端、APP移动端及项目、监管、数据屏三大平台组成,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
|
2月前
|
人工智能 物联网 大数据
解密时序数据库的未来:TDengine Open Day技术沙龙精彩回顾
在数字化时代,开源已成为推动技术创新和知识共享的核心力量,尤其在数据领域,开源技术的涌现不仅促进了行业的快速发展,也让更多的开发者和技术爱好者得以参与其中。随着物联网、工业互联网等技术的广泛应用,时序数据库的需求愈发强烈,开源的兴起更是为这一技术的创新与普及提供了强有力的支持。
36 3