m基于CNN卷积神经网络的口罩识别系统matlab仿真,带GUI操作界面,可以检测图片和视频,统计人数

简介: m基于CNN卷积神经网络的口罩识别系统matlab仿真,带GUI操作界面,可以检测图片和视频,统计人数

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法涉及理论知识概要
CNN 由许多神经网络层组成。卷积和池化这两种不同类型的层通常是交替的。网络中每个滤波器的深度从左到右增加。最后通常由一个或多个全连接的层组成。

Convnets 背后有三个关键动机:局部感受野、共享权重和池化。

(1)局部感受野

    如果想保留图像中的空间信息,那么用像素矩阵表示每个图像是很方便的。然后,编码局部结构的简单方法是将相邻输入神经元的子矩阵连接成属于下一层的单隐藏层神经元。这个单隐藏层神经元代表一个局部感受野。请注意,此操作名为“卷积”,此类网络也因此而得名。

(2)共享权重和偏置

    假设想要从原始像素表示中获得移除与输入图像中位置信息无关的相同特征的能力。一个简单的直觉就是对隐藏层中的所有神经元使用相同的权重和偏置。通过这种方式,每层将从图像中学习到独立于位置信息的潜在特征。

理解卷积的一个简单方法是考虑作用于矩阵的滑动窗函数。在下面的例子中,给定输入矩阵 I 和核 K,得到卷积输出。将 3×3 核 K(有时称为滤波器或特征检测器)与输入矩阵逐元素地相乘以得到输出卷积矩阵中的一个元素。

(3)池化层

    假设我们要总结一个特征映射的输出。我们可以使用从单个特征映射产生的输出的空间邻接性,并将子矩阵的值聚合成单个输出值,从而合成地描述与该物理区域相关联的含义。

     基于卷积神经网络(CNN)的口罩识别系统是一种用于自动检测人们是否佩戴口罩的技术。在COVID-19疫情爆发以来,这样的系统变得尤为重要,因为佩戴口罩已成为一种重要的健康防护措施。下面是对基于CNN的口罩识别系统的详细介绍:

系统工作原理:

数据收集与准备: 收集包含戴口罩和不戴口罩的人脸图像数据集。这些图像可以来自不同角度、光照条件和种类的人脸图像。数据集应具有标签,以指示每张图像中是否戴口罩。

数据预处理: 对收集到的图像进行预处理,包括图像尺寸调整、数据增强(如旋转、翻转、缩放等)以及归一化处理,以确保数据集具有一致的格式和质量。

构建CNN模型: 构建卷积神经网络模型,它是一种在图像处理任务中表现出色的深度学习模型。CNN模型通常包含卷积层、池化层、全连接层等,这些层可以有效地从图像中提取特征。

模型训练: 使用数据集对构建好的CNN模型进行训练。通过将图像输入模型并与相应的标签进行比较,模型会自动调整其内部参数,以最小化预测标签与实际标签之间的误差。

模型评估: 使用另外的测试数据集对训练好的模型进行评估,计算其在识别戴口罩和不戴口罩情况下的准确率、召回率、精确率等指标。

预测与应用: 使用训练好的模型对新的人脸图像进行预测。模型将分析图像并输出预测结果,即判断该人是否佩戴口罩。

系统优势:

自动化检测: 基于CNN的口罩识别系统可以自动检测人们是否戴口罩,减少了人工干预的需要。

准确性: CNN在图像处理任务中表现出色,可以准确地捕捉人脸图像中的特征,从而实现高准确率的口罩识别。

实时性: 经过优化的CNN模型可以实现实时的口罩识别,适用于人流密集的场所。

适应性: 可以通过不断收集新的数据进行模型迭代,提高系统在各种情况下的适应性。

应用场景:

公共场所管理: 在火车站、机场、商场等人流密集的公共场所使用,协助管理人员监控口罩佩戴情况。

企业入口管理: 用于企业、学校等机构的入口,确保进入人员佩戴口罩。

疫情防控: 在医院、隔离点等场所使用,辅助疫情防控工作。

交通工具: 用于公共交通工具入口,确保乘客佩戴口罩后方可乘坐。

基于CNN的口罩识别系统在当今的健康卫生环境中具有重要作用,有助于有效地降低疫情传播风险。

3.MATLAB核心程序
```function varargout = tops(varargin)
% TOPS MATLAB code for tops.fig
% TOPS, by itself, creates a new TOPS or raises the existing
% singleton.
%
% H = TOPS returns the handle to a new TOPS or the handle to
% the existing singleton
.
%
% TOPS('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in TOPS.M with the given input arguments.
%
% TOPS('Property','Value',...) creates a new TOPS or raises the
% existing singleton. Starting from the left, property value pairs are
% applied to the GUI before tops_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to tops_OpeningFcn via varargin.
%
%
See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help tops

% Last Modified by GUIDE v2.5 23-Aug-2023 23:37:39

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @tops_OpeningFcn, ...
'gui_OutputFcn', @tops_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before tops is made visible.
function tops_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to tops (see VARARGIN)

% Choose default command line output for tops
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes tops wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = tops_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global im;
cla (handles.axes1,'reset')
cla (handles.axes2,'reset')
set(handles.edit1,'string',num2str(0));
set(handles.edit2,'string',num2str(0));
set(handles.edit3,'string',num2str(0));
load CNNmask.mat
axes(handles.axes1);
[filename,pathname]=uigetfile({'.bmp;.jpg;.png;.jpeg;*.tif'},'选择一个图片','F:\test');
str=[pathname filename];
% 判断文件是否为空,也可以不用这个操作!直接读入图片也可以的
% im = imread(str);
% imshow(im)
if isequal(filename,0)||isequal(pathname,0)
warndlg('please select a picture first!','warning');
return;
else
im = imread(str);
imshow(im);
end

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global im;
load CNNmask.mat

img_size = [227,227];
frameCount = 0;
FDetect = vision.CascadeObjectDetector;
picture = im;
orig_picture = picture;
BB = step(FDetect, picture);
frameCount = frameCount+1;
axes(handles.axes2);

cnt0=0;
cnt1=0;
if size(BB,1) >= 1
for faces_iter = 1:size(BB,1)
picture_cropped = imcrop(orig_picture,BB(faces_iter,:));
picture_resized = imresize(picture_cropped,img_size);
label = classify(net, picture_resized);
label_text = char(label);

    if strcmp(label_text, 'no_mask')
        text_color = 'red';
        line_color{faces_iter} = 'r';
        cnt0=cnt0+1;
    end
    if strcmp(label_text, 'mask')
       text_color = 'green';
       line_color{faces_iter} = 'g';
        cnt1=cnt1+1;
    end
     label_text
     line_color
     image(picture); 
     axis off;
end
for faces_iter = 1:size(BB,1)  
    rectangle('Position', BB(faces_iter,:), 'Linewidth',2,'LineStyle','-','EdgeColor',line_color{faces_iter});
    hold on
end

else
image(picture);
picture = imresize(picture,img_size);
axis off
end

set(handles.edit1,'string',num2str(size(BB,1)));
set(handles.edit2,'string',num2str(cnt1));
set(handles.edit3,'string',num2str(cnt0));
% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global vid;
global numFrames;
cla (handles.axes1,'reset')
cla (handles.axes2,'reset')
load CNNmask.mat
set(handles.edit1,'string',num2str(0));
set(handles.edit2,'string',num2str(0));
set(handles.edit3,'string',num2str(0));

axes(handles.axes1);
[filename,pathname]=uigetfile({'*.mp4'},'选择一个视频','F:\test');
str=[pathname filename];
% 判断文件是否为空,也可以不用这个操作!直接读入图片也可以的
% im = imread(str);
% imshow(im)
if isequal(filename,0)||isequal(pathname,0)
warndlg('please select a picture first!','warning');
return;
else
vid = VideoReader(str);
numFrames = vid.NumFrames;
for i = 1:1:numFrames
picture = read(vid,i);
image(picture);
drawnow;
end
end

% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global vid;
global numFrames;
load CNNmask.mat
img_size = [227,227];
frameCount = 0;
FDetect = vision.CascadeObjectDetector;
axes(handles.axes2);
```

相关文章
|
7天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
11天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
25 7
|
23天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
7天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
2月前
|
机器学习/深度学习 安全 网络安全
利用机器学习优化网络安全威胁检测
【9月更文挑战第20天】在数字时代,网络安全成为企业和个人面临的重大挑战。传统的安全措施往往无法有效应对日益复杂的网络攻击手段。本文将探讨如何通过机器学习技术来提升威胁检测的效率和准确性,旨在为读者提供一种创新的视角,以理解和实施机器学习在网络安全中的应用,从而更好地保护数据和系统免受侵害。
|
2月前
|
机器学习/深度学习 数据采集 网络安全
使用Python实现深度学习模型:智能网络安全威胁检测
使用Python实现深度学习模型:智能网络安全威胁检测
174 5
|
25天前
|
运维 安全 网络协议
Python 网络编程:端口检测与IP解析
本文介绍了使用Python进行网络编程的两个重要技能:检查端口状态和根据IP地址解析主机名。通过`socket`库实现端口扫描和主机名解析的功能,并提供了详细的示例代码。文章最后还展示了如何整合这两部分代码,实现一个简单的命令行端口扫描器,适用于网络故障排查和安全审计。

热门文章

最新文章