量化自定义PyTorch模型入门教程

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 在以前Pytorch只有一种量化的方法,叫做“eager mode qunatization”,在量化我们自定定义模型时经常会产生奇怪的错误,并且很难解决。但是最近,PyTorch发布了一种称为“fx-graph-mode-qunatization”的方方法。在本文中我们将研究这个fx-graph-mode-qunatization”看看它能不能让我们的量化操作更容易,更稳定。

本文将使用CIFAR 10和一个自定义AlexNet模型,我对这个模型进行了小的修改以提高效率,最后就是因为模型和数据集都很小,所以CPU也可以跑起来。

 import os
 import cv2
 import time
 import torch
 import numpy as np
 import torchvision
 from PIL import Image
 import torch.nn as nn
 import matplotlib.pyplot as plt
 from torchvision import transforms
 from torchvision import datasets, models, transforms

 device = "cpu"

 print(device)
 transform = transforms.Compose([
     transforms.Resize(224),
     transforms.ToTensor(),
     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
     ])

 batch_size = 8

 trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                         download=True, transform=transform)

 testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                        download=True, transform=transform)

 trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
                                           shuffle=True, num_workers=2)

 testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
                                          shuffle=False, num_workers=2)

 def print_model_size(mdl):
     torch.save(mdl.state_dict(), "tmp.pt")
     print("%.2f MB" %(os.path.getsize("tmp.pt")/1e6))
     os.remove('tmp.pt')

模型代码如下,使用AlexNet是因为他包含了我们日常用到的基本层:

 from torch.nn import init
 class mAlexNet(nn.Module):
     def __init__(self, num_classes=2):
         super().__init__()
         self.input_channel = 3
         self.num_output = num_classes

         self.layer1 = nn.Sequential(
             nn.Conv2d(in_channels=self.input_channel, out_channels= 16, kernel_size= 11, stride= 4),
             nn.ReLU(inplace=True),
             nn.MaxPool2d(kernel_size=3, stride=2)
         )
         init.xavier_uniform_(self.layer1[0].weight,gain= nn.init.calculate_gain('conv2d'))

         self.layer2 = nn.Sequential(
             nn.Conv2d(in_channels= 16, out_channels= 20, kernel_size= 5, stride= 1),
             nn.ReLU(inplace=True),
             nn.MaxPool2d(kernel_size=3, stride=2)
         )
         init.xavier_uniform_(self.layer2[0].weight,gain= nn.init.calculate_gain('conv2d'))

         self.layer3 = nn.Sequential(
             nn.Conv2d(in_channels= 20, out_channels= 30, kernel_size= 3, stride= 1),
             nn.ReLU(inplace=True),
             nn.MaxPool2d(kernel_size=3, stride=2)
         )
         init.xavier_uniform_(self.layer3[0].weight,gain= nn.init.calculate_gain('conv2d'))


         self.layer4 = nn.Sequential(
             nn.Linear(30*3*3, out_features=48),
             nn.ReLU(inplace=True)
         )
         init.kaiming_normal_(self.layer4[0].weight, mode='fan_in', nonlinearity='relu')

         self.layer5 = nn.Sequential(
             nn.Linear(in_features=48, out_features=self.num_output)
         )
         init.kaiming_normal_(self.layer5[0].weight, mode='fan_in', nonlinearity='relu')


     def forward(self, x):
         x = self.layer1(x)
         x = self.layer2(x)
         x = self.layer3(x)

         # Squeezes or flattens the image, but keeps the batch dimension
         x = x.reshape(x.size(0), -1)
         x = self.layer4(x)
         logits= self.layer5(x)
         return logits

 model = mAlexNet(num_classes= 10).to(device)

现在让我们用基本精度模型做一个快速的训练循环来获得基线:

 import torch.optim as optim 

 def train_model(model):
   criterion =  nn.CrossEntropyLoss()
   optimizer = optim.SGD(model.parameters(), lr=0.001, momentum = 0.9)

   for epoch in range(2):
     running_loss =0.0

     for i, data in enumerate(trainloader,0):

       inputs, labels = data
       inputs, labels = inputs.to(device), labels.to(device)

       optimizer.zero_grad()
       outputs = model(inputs)
       loss = criterion(outputs, labels)
       loss.backward()
       optimizer.step()

       # print statistics
       running_loss += loss.item()
       if i % 1000 == 999:
         print(f'[Ep: {epoch + 1}, Step: {i + 1:5d}] loss: {running_loss / 2000:.3f}')
         running_loss = 0.0

   return model

 model = train_model(model)
 PATH = './float_model.pth'
 torch.save(model.state_dict(), PATH)

可以看到损失是在降低的,我们这里只演示量化,所以就训练了2轮,对于准确率我们只做对比。

我将做所有三种可能的量化:

  1. 动态量化 Dynamic qunatization:使权重为整数(训练后)
  2. 静态量化 Static quantization:使权值和激活值为整数(训练后)
  3. 量化感知训练 Quantization aware training:以整数精度对模型进行训练

我们先从动态量化开始:

 import torch
 from torch.ao.quantization import (
   get_default_qconfig_mapping,
   get_default_qat_qconfig_mapping,
   QConfigMapping,
 )
 import torch.ao.quantization.quantize_fx as quantize_fx
 import copy

 # Load float model
 model_fp = mAlexNet(num_classes= 10).to(device)
 model_fp.load_state_dict(torch.load("./float_model.pth", map_location=device))

 # Copy model to qunatize
 model_to_quantize = copy.deepcopy(model_fp).to(device)
 model_to_quantize.eval()
 qconfig_mapping = QConfigMapping().set_global(torch.ao.quantization.default_dynamic_qconfig)

 # a tuple of one or more example inputs are needed to trace the model
 example_inputs = next(iter(trainloader))[0]

 # prepare
 model_prepared = quantize_fx.prepare_fx(model_to_quantize, qconfig_mapping, 
                   example_inputs)
 # no calibration needed when we only have dynamic/weight_only quantization
 # quantize
 model_quantized_dynamic = quantize_fx.convert_fx(model_prepared)

正如你所看到的,只需要通过模型传递一个示例输入来校准量化层,所以代码十分简单,看看我们的模型对比:

 print_model_size(model)
 print_model_size(model_quantized_dynamic)

可以看到的,减少了0.03 MB或者说模型变为了原来的75%,我们可以通过静态模式量化使其更小:

 model_to_quantize = copy.deepcopy(model_fp)
 qconfig_mapping = get_default_qconfig_mapping("qnnpack")
 model_to_quantize.eval()
 # prepare
 model_prepared = quantize_fx.prepare_fx(model_to_quantize, qconfig_mapping, example_inputs)
 # calibrate 
 with torch.no_grad():
     for i in range(20):
         batch = next(iter(trainloader))[0]
         output = model_prepared(batch.to(device))

静态量化与动态量化是非常相似的,我们只需要传递更多批次的数据来更好地校准模型。

让我们看看这些步骤是如何影响模型的:

可以看到其实程序为我们做了很多事情,所以我们才可以专注于功能而不是具体的实现,通过以上的准备,我们可以进行最后的量化了:

 # quantize
 model_quantized_static = quantize_fx.convert_fx(model_prepared)

量化后的model_quantized_static看起来像这样:

现在可以更清楚地看到,将Conv2d和Relu层融合并替换为相应的量子化对应层,并对其进行校准。可以将这些模型与最初的模型进行比较:

 print_model_size(model)
 print_model_size(model_quantized_dynamic)
 print_model_size(model_quantized_static)

量子化后的模型比原来的模型小3倍,这对于大模型来说非常重要

现在让我们看看如何在量化的情况下训练模型,量化感知的训练就需要在训练的时候加入量化的操作,代码如下:

 model_to_quantize = mAlexNet(num_classes= 10).to(device)
 qconfig_mapping = get_default_qat_qconfig_mapping("qnnpack")
 model_to_quantize.train()
 # prepare
 model_prepared = quantize_fx.prepare_qat_fx(model_to_quantize, qconfig_mapping, example_inputs)

 # training loop 
 model_trained_prepared = train_model(model_prepared)

 # quantize
 model_quantized_trained = quantize_fx.convert_fx(model_trained_prepared)

让我们比较一下到目前为止所有模型的大小。

 print("Regular floating point model: " )
 print_model_size( model_fp)
 print("Weights only qunatization: ")
 print_model_size( model_quantized_dynamic)
 print("Weights/Activations only qunatization: ")
 print_model_size(model_quantized_static)
 print("Qunatization aware trained: ")
 print_model_size(model_quantized_trained)

量化感知的训练对模型的大小没有任何影响,但它能提高准确率吗?

 def get_accuracy(model):
   correct = 0
   total = 0
   with torch.no_grad():
       for data in testloader:
           images, labels = data
           images, labels = images, labels
           outputs = model(images)
           _, predicted = torch.max(outputs.data, 1)
           total += labels.size(0)
           correct += (predicted == labels).sum().item()

       return 100 * correct / total

 fp_model_acc = get_accuracy(model)
 dy_model_acc = get_accuracy(model_quantized_dynamic)
 static_model_acc = get_accuracy(model_quantized_static)
 q_trained_model_acc = get_accuracy(model_quantized_trained)


 print("Acc on fp_model:" ,fp_model_acc)
 print("Acc weigths only quantization:", dy_model_acc)
 print("Acc weigths/activations quantization" ,static_model_acc)
 print("Acc on qunatization awere trained model:" ,q_trained_model_acc)

为了更方便的比较,我们可视化一下:

可以看到基础模型与量化模型具有相似的准确性,但模型尺寸大大减小,这在我们希望将其部署到服务器或低功耗设备上时至关重要。

最后一些资料:

https://avoid.overfit.cn/post/a72a7478c344466581295418f1620f9b

作者:mor40

目录
相关文章
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
365 2
|
3月前
|
机器学习/深度学习 存储 PyTorch
PyTorch自定义学习率调度器实现指南
本文将详细介绍如何通过扩展PyTorch的 ``` LRScheduler ``` 类来实现一个具有预热阶段的余弦衰减调度器。我们将分五个关键步骤来完成这个过程。
203 2
|
20天前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
35 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
2月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
69 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
2月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
121 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
3月前
|
并行计算 PyTorch 算法框架/工具
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
文章介绍了如何在CUDA 12.1、CUDNN 8.9和PyTorch 2.3.1环境下实现自定义数据集的训练,包括环境配置、预览结果和核心步骤,以及遇到问题的解决方法和参考链接。
166 4
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
|
3月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
204 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
3月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
54 3
PyTorch 模型调试与故障排除指南
|
2月前
|
存储 并行计算 PyTorch
探索PyTorch:模型的定义和保存方法
探索PyTorch:模型的定义和保存方法
|
4月前
|
机器学习/深度学习 PyTorch 编译器
PyTorch 与 TorchScript:模型的序列化与加速
【8月更文第27天】PyTorch 是一个非常流行的深度学习框架,它以其灵活性和易用性而著称。然而,当涉及到模型的部署和性能优化时,PyTorch 的动态计算图可能会带来一些挑战。为了解决这些问题,PyTorch 引入了 TorchScript,这是一个用于序列化和优化 PyTorch 模型的工具。本文将详细介绍如何使用 TorchScript 来序列化 PyTorch 模型以及如何加速模型的执行。
169 4