聚焦Python分布式爬虫必学框架Scrapy打造搜索引擎

简介: 聚焦Python分布式爬虫必学框架Scrapy打造搜索引擎

CSS选择器

   

XPath的用法

一、选取节点

常用的路劲表达式:

表达式 描述 实例  
nodename 选取nodename节点的所有子节点 xpath(‘//div’) 选取了div节点的所有子节点
/ 从根节点选取 xpath(‘/div’) 从根节点上选取div节点
// 选取所有的当前节点,不考虑他们的位置 xpath(‘//div’) 选取所有的div节点
. 选取当前节点 xpath(‘./div’) 选取当前节点下的div节点
.. 选取当前节点的父节点 xpath(‘..’) 回到上一个节点
@ 选取属性 xpath(’//@calss’) 选取所有的class属性

二、谓语

谓语被嵌在方括号内,用来查找某个特定的节点或包含某个制定的值的节点

实例:

表达式 结果
xpath(‘/body/div[1]’) 选取body下的第一个div节点
xpath(‘/body/div[last()]’) 选取body下最后一个div节点
xpath(‘/body/div[last()-1]’) 选取body下倒数第二个div节点
xpath(‘/body/div[positon()<3]’) 选取body下前两个div节点
xpath(‘/body/div[@class]’) 选取body下带有class属性的div节点
xpath(‘/body/div[@class=”main”]’) 选取body下class属性为main的div节点
xpath(‘/body/div[price>35.00]’) 选取body下price元素值大于35的div节点

三、通配符

Xpath通过通配符来选取未知的XML元素

表达式 结果
xpath(’/div/*’) 选取div下的所有子节点
xpath(‘/div[@*]’) 选取所有带属性的div节点

四、取多个路径

使用“|”运算符可以选取多个路径

表达式 结果
xpath(‘//div|//table’) 选取所有的div和table节点

五、Xpath轴

轴可以定义相对于当前节点的节点集

轴名称 表达式 描述
ancestor xpath(‘./ancestor::*’) 选取当前节点的所有先辈节点(父、祖父)
ancestor-or-self xpath(‘./ancestor-or-self::*’) 选取当前节点的所有先辈节点以及节点本身
attribute xpath(‘./attribute::*’) 选取当前节点的所有属性
child xpath(‘./child::*’) 返回当前节点的所有子节点
descendant xpath(‘./descendant::*’) 返回当前节点的所有后代节点(子节点、孙节点)
following xpath(‘./following::*’) 选取文档中当前节点结束标签后的所有节点
following-sibing xpath(‘./following-sibing::*’) 选取当前节点之后的兄弟节点
parent xpath(‘./parent::*’) 选取当前节点的父节点
preceding xpath(‘./preceding::*’) 选取文档中当前节点开始标签前的所有节点
preceding-sibling xpath(‘./preceding-sibling::*’) 选取当前节点之前的兄弟节点
self xpath(‘./self::*’) 选取当前节点

六、功能函数  

使用功能函数能够更好的进行模糊搜索

函数 用法 解释
starts-with xpath(‘//div[starts-with(@id,”ma”)]‘) 选取id值以ma开头的div节点
contains xpath(‘//div[contains(@id,”ma”)]‘) 选取id值包含ma的div节点
and xpath(‘//div[contains(@id,”ma”) and contains(@id,”in”)]‘) 选取id值包含ma和in的div节点
text() xpath(‘//div[contains(text(),”ma”)]‘) 选取节点文本包含ma的div节点
     


相关文章
|
7天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
8天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
9天前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
16天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
60 6
|
10天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
15天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
36 7
|
15天前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
61 3
|
14天前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
14天前
|
数据采集 存储 XML
Python实现网络爬虫自动化:从基础到实践
本文将介绍如何使用Python编写网络爬虫,从最基础的请求与解析,到自动化爬取并处理复杂数据。我们将通过实例展示如何抓取网页内容、解析数据、处理图片文件等常用爬虫任务。
|
17天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
40 4