scrapy_redis分布式组件Connection源码解读及工作原理

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 之前已经将主要的scrapy_redis分布式组件源码及其工作原理介绍完成,今天介绍分布式组件的最后一个Connection,这是Redis的连接组件。《RedisSpider的调度队列实现过程及其源码》《scrapy中scrapy_redis分布式内置pipeline源码及其工作原理》...

之前已经将主要的scrapy_redis分布式组件源码及其工作原理介绍完成,今天介绍分布式组件的最后一个Connection,这是Redis的连接组件。

RedisSpider的调度队列实现过程及其源码

scrapy中scrapy_redis分布式内置pipeline源码及其工作原理

scrapy分布式调度源码及其实现过程

scrapy分布式Spider源码分析及实现过程

scrapy分布式去重组件源码及其实现过程

scrapy_redis中序列化源码及其在程序设计中的应用

Connection组件是用创建Redis的客户端的,其源码如下:

import six

from scrapy.utils.misc import load_object

from . import defaults


# Shortcut maps 'setting name' -> 'parmater name'.
SETTINGS_PARAMS_MAP = {
    'REDIS_URL''url',
    'REDIS_HOST''host',
    'REDIS_PORT''port',
    'REDIS_ENCODING''encoding',
}


def get_redis_from_settings(settings):
    """Returns a redis client instance from given Scrapy settings object.

    This function uses ``get_client`` to instantiate the client and uses
    ``defaults.REDIS_PARAMS`` global as defaults values for the parameters. You
    can override them using the ``REDIS_PARAMS`` setting.

    Parameters
    ----------
    settings : Settings
        A scrapy settings object. See the supported settings below.

    Returns
    -------
    server
        Redis client instance.

    Other Parameters
    ----------------
    REDIS_URL : str, optional
        Server connection URL.
    REDIS_HOST : str, optional
        Server host.
    REDIS_PORT : str, optional
        Server port.
    REDIS_ENCODING : str, optional
        Data encoding.
    REDIS_PARAMS : dict, optional
        Additional client parameters.

    """
    params = defaults.REDIS_PARAMS.copy()
    params.update(settings.getdict('REDIS_PARAMS'))
    XXX: Deprecate REDIS_* settings.
    for source, dest in SETTINGS_PARAMS_MAP.items():
        val = settings.get(source)
        if val:
            params[dest] = val

    # Allow ``redis_cls`` to be a path to a class.
    if isinstance(params.get('redis_cls'), six.string_types):
        params['redis_cls'] = load_object(params['redis_cls'])

    return get_redis(**params)


# Backwards compatible alias.
from_settings = get_redis_from_settings


def get_redis(**kwargs):
    """Returns a redis client instance.

    Parameters
    ----------
    redis_cls : class, optional
        Defaults to ``redis.StrictRedis``.
    url : str, optional
        If given, ``redis_cls.from_url`` is used to instantiate the class.
    **kwargs
        Extra parameters to be passed to the ``redis_cls`` class.

    Returns
    -------
    server
        Redis client instance.

    """
    redis_cls = kwargs.pop('redis_cls', defaults.REDIS_CLS)
    url = kwargs.pop('url'None)
    if url:
        return redis_cls.from_url(url, **kwargs)
    else:
        return redis_cls(**kwargs)
AI 代码解读


首先是设置了配置文件配置字段和传入参数的键值对SETTINGS_PARAMS_MAP,这个键值对后面会反转。

SETTINGS_PARAMS_MAP = {
    'REDIS_URL''url',
    'REDIS_HOST''host',
    'REDIS_PORT''port',
    'REDIS_ENCODING''encoding',
}
AI 代码解读


然后读出默认的配置参数给params字段并将setting字段中的Redis配置更新进params字段。

params = defaults.REDIS_PARAMS.copy()
params.update(settings.getdict('REDIS_PARAMS'))
AI 代码解读


接着开始将配置文件中的配置字段替换成传入参数字段,如:REDIS_URL替换成url,REDIS_HOST替换成host。

    for source, dest in SETTINGS_PARAMS_MAP.items():
        val = settings.get(source)
        if val:
            params[dest] = val
AI 代码解读


然后是处理实例化Redis客户端的类,根据‘redis_cls’路径返回实例化redis客户端的类load_object(params['redis_cls'])

 if isinstance(params.get('redis_cls'), six.string_types):
        params['redis_cls'] = load_object(params['redis_cls'])
AI 代码解读


然后是调用创建客户端的函数get_redis(),该函数中redis_cls = kwargs.pop('redis_cls', defaults.REDIS_CLS)的作用是在参数列表中弹出实例化客户端的类,如果没有将用默认的类创建

REDIS_CLS = redis.StrictRedis

    

url = kwargs.pop('url', None)弹出url,如果有url弹出那么将选择url连接的方式实例化,反之选择含有账号密码的参数列表实例化。

    redis_cls = kwargs.pop('redis_cls', defaults.REDIS_CLS)
    url = kwargs.pop('url', None)
    if url:
        return redis_cls.from_url(url, **kwargs)
    else:
        return redis_cls(**kwargs)
AI 代码解读


当然最后就返回了一个连接的redis客户端。


原文链接
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
打赏
0
0
0
0
760
分享
相关文章
智慧工地源码,Java语言开发,微服务架构,支持分布式和集群部署,多端覆盖
智慧工地是“互联网+建筑工地”的创新模式,基于物联网、移动互联网、BIM、大数据、人工智能等技术,实现对施工现场人员、设备、材料、安全等环节的智能化管理。其解决方案涵盖数据大屏、移动APP和PC管理端,采用高性能Java微服务架构,支持分布式与集群部署,结合Redis、消息队列等技术确保系统稳定高效。通过大数据驱动决策、物联网实时监测预警及AI智能视频监控,消除数据孤岛,提升项目可控性与安全性。智慧工地提供专家级远程管理服务,助力施工质量和安全管理升级,同时依托可扩展平台、多端应用和丰富设备接口,满足多样化需求,推动建筑行业数字化转型。
36 5
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
分布式爬虫框架Scrapy-Redis实战指南
|
1月前
|
【📕分布式锁通关指南 07】源码剖析redisson利用看门狗机制异步维持客户端锁
Redisson 的看门狗机制是解决分布式锁续期问题的核心功能。当通过 `lock()` 方法加锁且未指定租约时间时,默认启用 30 秒的看门狗超时时间。其原理是在获取锁后创建一个定时任务,每隔 1/3 超时时间(默认 10 秒)通过 Lua 脚本检查锁状态并延长过期时间。续期操作异步执行,确保业务线程不被阻塞,同时仅当前持有锁的线程可成功续期。锁释放时自动清理看门狗任务,避免资源浪费。学习源码后需注意:避免使用带超时参数的加锁方法、控制业务执行时间、及时释放锁以优化性能。相比手动循环续期,Redisson 的定时任务方式更高效且安全。
101 24
【📕分布式锁通关指南 07】源码剖析redisson利用看门狗机制异步维持客户端锁
|
1月前
【📕分布式锁通关指南 08】源码剖析redisson可重入锁之释放及阻塞与非阻塞获取
本文深入剖析了Redisson中可重入锁的释放锁Lua脚本实现及其获取锁的两种方式(阻塞与非阻塞)。释放锁流程包括前置检查、重入计数处理、锁删除及消息发布等步骤。非阻塞获取锁(tryLock)通过有限时间等待返回布尔值,适合需快速反馈的场景;阻塞获取锁(lock)则无限等待直至成功,适用于必须获取锁的场景。两者在等待策略、返回值和中断处理上存在显著差异。本文为理解分布式锁实现提供了详实参考。
83 11
【📕分布式锁通关指南 08】源码剖析redisson可重入锁之释放及阻塞与非阻塞获取
Redis分布式锁如何实现 ?
Redis分布式锁主要依靠一个SETNX指令实现的 , 这条命令的含义就是“SET if Not Exists”,即不存在的时候才会设置值。 只有在key不存在的情况下,将键key的值设置为value。如果key已经存在,则SETNX命令不做任何操作。 这个命令的返回值如下。 ● 命令在设置成功时返回1。 ● 命令在设置失败时返回0。 假设此时有线程A和线程B同时访问临界区代码,假设线程A首先执行了SETNX命令,并返回结果1,继续向下执行。而此时线程B再次执行SETNX命令时,返回的结果为0,则线程B不能继续向下执行。只有当线程A执行DELETE命令将设置的锁状态删除时,线程B才会成功执行S
|
1月前
|
【📕分布式锁通关指南 06】源码剖析redisson可重入锁之加锁
本文详细解析了Redisson可重入锁的加锁流程。首先从`RLock.lock()`方法入手,通过获取当前线程ID并调用`tryAcquire`尝试加锁。若加锁失败,则订阅锁释放通知并循环重试。核心逻辑由Lua脚本实现:检查锁是否存在,若不存在则创建并设置重入次数为1;若存在且为当前线程持有,则重入次数+1。否则返回锁的剩余过期时间。此过程展示了Redisson高效、可靠的分布式锁机制。
66 0
【📕分布式锁通关指南 06】源码剖析redisson可重入锁之加锁
|
2月前
|
【📕分布式锁通关指南 04】redis分布式锁的细节问题以及RedLock算法原理
本文深入探讨了基于Redis实现分布式锁时遇到的细节问题及解决方案。首先,针对锁续期问题,提出了通过独立服务、获取锁进程自己续期和异步线程三种方式,并详细介绍了如何利用Lua脚本和守护线程实现自动续期。接着,解决了锁阻塞问题,引入了带超时时间的`tryLock`机制,确保在高并发场景下不会无限等待锁。最后,作为知识扩展,讲解了RedLock算法原理及其在实际业务中的局限性。文章强调,在并发量不高的场景中手写分布式锁可行,但推荐使用更成熟的Redisson框架来实现分布式锁,以保证系统的稳定性和可靠性。
78 0
【📕分布式锁通关指南 04】redis分布式锁的细节问题以及RedLock算法原理
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
100 29
Redis应用—8.相关的缓存框架
本文介绍了Ehcache和Guava Cache两个缓存框架及其使用方法,以及如何自定义缓存。主要内容包括:Ehcache缓存框架、Guava Cache缓存框架、自定义缓存。总结:Ehcache适合用作本地缓存或与Redis结合使用,Guava Cache则提供了更灵活的缓存管理和更高的并发性能。自定义缓存可以根据具体需求选择不同的数据结构和引用类型来实现特定的缓存策略。
118 16
Redis应用—8.相关的缓存框架
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等