Elasticsearch数据建模实战之对文件系统进行数据建模以及文件搜索实战

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Elasticsearch数据建模实战之对文件系统进行数据建模以及文件搜索实战

数据建模,对类似文件系统这种的有多层级关系的数据进行建模

1、文件系统数据构造

PUT /fs
{
  "settings": {
    "analysis": {
      "analyzer": {
        "paths": { 
          "tokenizer": "path_hierarchy"
        }
      }
    }
  }
}

path_hierarchy tokenizer讲解

/a/b/c/d --> path_hierarchy -> /a/b/c/d, /a/b/c, /a/b, /a

fs: filesystem

PUT /fs/_mapping/file
{
  "properties": {
    "name": { 
      "type":  "keyword"
    },
    "path": { 
      "type":  "keyword",
      "fields": {
        "tree": { 
          "type":     "text",
          "analyzer": "paths"
        }
      }
    }
  }
}
PUT /fs/file/1
{
  "name":     "README.txt", 
  "path":     "/workspace/projects/helloworld", 
  "contents": "这是我的第一个elasticsearch程序"
}

2、对文件系统执行搜索

文件搜索需求:查找一份,内容包括elasticsearch,在/workspace/projects/hellworld这个目录下的文件

GET /fs/file/_search 
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "contents": "elasticsearch"
          }
        },
        {
          "constant_score": {
            "filter": {
              "term": {
                "path": "/workspace/projects/helloworld"
              }
            }
          }
        }
      ]
    }
  }
}

搜索需求2:搜索/workspace目录下,内容包含elasticsearch的所有的文件

/workspace/projects/helloworld    doc1

/workspace/projects               doc1

/workspace                        doc1

GET /fs/file/_search 
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "contents": "elasticsearch"
          }
        },
        {
          "constant_score": {
            "filter": {
              "term": {
                "path.tree": "/workspace"
              }
            }
          }
        }
      ]
    }
  }
}

结果:

1. {
2.   "took": 2,
3.   "timed_out": false,
4.   "_shards": {
5.     "total": 5,
6.     "successful": 5,
7.     "failed": 0
8.   },
9.   "hits": {
10.     "total": 1,
11.     "max_score": 1.284885,
12.     "hits": [
13.       {
14.         "_index": "fs",
15.         "_type": "file",
16.         "_id": "1",
17.         "_score": 1.284885,
18.         "_source": {
19.           "name": "README.txt",
20.           "path": "/workspace/projects/helloworld",
21.           "contents": "这是我的第一个elasticsearch程序"
22.         }
23.       }
24.     ]
25.   }
26. }

 


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
1月前
|
存储 自然语言处理 BI
|
2天前
|
存储 缓存 固态存储
Elasticsearch高性能搜索
【11月更文挑战第1天】
14 6
|
1天前
|
API 索引
Elasticsearch实时搜索
【11月更文挑战第2天】
7 1
|
24天前
|
人工智能
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
168 2
|
28天前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
162 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
2月前
|
存储 缓存 自然语言处理
深度解析ElasticSearch:构建高效搜索与分析的基石
【9月更文挑战第8天】在数据爆炸的时代,如何快速、准确地从海量数据中检索出有价值的信息成为了企业面临的重要挑战。ElasticSearch,作为一款基于Lucene的开源分布式搜索和分析引擎,凭借其强大的实时搜索、分析和扩展能力,成为了众多企业的首选。本文将深入解析ElasticSearch的核心原理、架构设计及优化实践,帮助读者全面理解这一强大的工具。
165 7
|
2月前
|
存储 搜索推荐 数据建模
Elasticsearch 的数据建模与索引设计
【9月更文第3天】Elasticsearch 是一个基于 Lucene 的搜索引擎,广泛应用于全文检索、数据分析等领域。为了确保 Elasticsearch 的高效运行,合理的数据建模和索引设计至关重要。本文将探讨如何为不同的应用场景设计高效的索引结构,并分享一些数据建模的最佳实践。
104 2
|
2月前
|
JSON 监控 Java
Elasticsearch 入门:搭建高性能搜索集群
【9月更文第2天】Elasticsearch 是一个分布式的、RESTful 风格的搜索和分析引擎,基于 Apache Lucene 构建。它能够处理大量的数据,提供快速的搜索响应。本教程将指导你如何从零开始搭建一个基本的 Elasticsearch 集群,并演示如何进行简单的索引和查询操作。
192 3
|
28天前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
96 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
2月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo