回归预测 | MATLAB实现DBN-ELM深度置信网络结合极限学习机多输入单输出回归预测

简介: 回归预测 | MATLAB实现DBN-ELM深度置信网络结合极限学习机多输入单输出回归预测

回归预测 | MATLAB实现DBN-ELM深度置信网络结合极限学习机多输入单输出回归预测

预测效果

image.png
image.png

基本介绍

1.MATLAB实现DBN-ELM深度置信网络结合极限学习机多输入单输出回归预测;
2.多输入单输出回归预测。
3.深度信念网络,DBN,Deep Belief Nets,神经网络的一种。既可以用于非监督学习,类似于一个自编码机;也可以用于监督学习,作为分类器来使用。DBN由若干层神经元构成,组成元件是受限玻尔兹曼机(RBM)。
RBM是一种神经感知器,由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。限制玻尔兹曼机和玻尔兹曼机相比,主要是加入了“限制”。限制玻尔兹曼机可以用于降维(隐层少一点),学习特征(隐层输出就是特征),深度信念网络(多个RBM堆叠而成)等。

1

模型描述

受限玻尔兹曼机(RBM)是一种具有随机性的生成神经网络结构,它本质上是一种由具有随机性的一层可见神经元和一层隐藏神经元所构成的无向图模型。它只有在隐藏层和可见层神经元之间有连接,可见层神经元之间以及隐藏层神经元之间都没有连接。并且,隐藏层神经元通常取二进制并服从伯努利分布,可见层神经元可以根据输入的类型取二进制或者实数值。

2

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现DBN-ELM深度置信网络结合极限学习机多输入单输出回归预测
%受限玻尔兹曼机预训练程序
% This program trains Restricted Boltzmann Machine in which
% visible, binary, stochastic pixels are connected to
% hidden, binary, stochastic feature detectors using symmetrically
% weighted connections. Learning is done with 1-step Contrastive Divergence.   
% The program assumes that the following variables are set externally:
% maxepoch  -- maximum number of epochs
% numhid    -- number of hidden units 
% batchdata -- the data that is divided into batches (numcases numdims numbatches)
% restart   -- set to 1 if learning starts from beginning 
% 参数设置
epsilonw      = 0.01;   % Learning rate for weights 权值学习率
epsilonvb     = 0.01;   % Learning rate for biases of visible units可视节点的偏置学习率 
epsilonhb     = 0.01;   % Learning rate for biases of hidden units 隐含节点的偏置学习率
weightcost  = 0.0008;   %权重衰减系数
initialmomentum  = 0.5; %初始动量项
finalmomentum    = 0.9; %确定动量项

[numcases,numdims ,numbatches]=size(batchdata);

if restart ==1,
  restart=0;
  epoch=1;

% Initializing symmetric weights and biases. 
  vishid     = 0.1*randn(numdims, numhid);%可视节点到隐含节点之间的权值初始化
  hidbiases  = zeros(1,numhid);%隐含节点的初始化为0
  visbiases  = zeros(1,numdims);%可视节点偏置初始化为0

  poshidprobs = zeros(numcases,numhid);%初始化单个迷你块正向传播时隐含层的输出概率
  neghidprobs = zeros(numcases,numhid);
  posprods    = zeros(numdims,numhid);
  negprods    = zeros(numdims,numhid);
  vishidinc  = zeros(numdims,numhid);
  hidbiasinc = zeros(1,numhid);
  visbiasinc = zeros(1,numdims);
                                       %整个数据集正向传播时隐含层的输出概率
  batchposhidprobs=zeros(numcases,numhid,numbatches);
end

for epoch = epoch:maxepoch,%所有迭代次数
 %fprintf(1,'epoch %d\r',epoch); 
 errsum=0;
 for batch = 1:numbatches, %每次迭代都遍历所有的数据块
 %fprintf(1,'epoch %d batch %d\r',epoch,batch); 

%%%%%%%%% 开始正向阶段的计算%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  data = batchdata(:,:,batch);      %每次迭代选择一个迷你块的数据,,每一行代表一个样本值
                                    %这里的数据并非二值的,严格来说,应该将其进行二值化
  poshidprobs = 1./(1 + exp(-data*vishid - repmat(hidbiases,numcases,1)));   
                                     %计算隐含层节点的输出概率,所用的是sigmoid函数
  %%%计算正向阶段的参数统计量%%%%%%%%%%%%%%%%%%%%
  batchposhidprobs(:,:,batch)=poshidprobs;
  posprods    = data' * poshidprobs;%用可视节点向量和隐含层节点向量的乘积计算正向散度统计量
  poshidact   = sum(poshidprobs);   %针对样本值进行求和,用于计算隐含节点的偏置
  posvisact = sum(data);             %对数据进行求和,用于计算可视节点的偏置,当迷你块中样本的个数为1时,
                                      % 求得的偏置向量中的又换宿相同,此时会影响预训练的结果

%%%%%%%%% 正向阶段结束  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  poshidstates = poshidprobs > rand(numcases,numhid);
  %将隐含层的概率激活值poshidprobs进行0.1二值化,按照概率值大小来判定。rand(m,n)产生
  %m*n大小的矩阵,将poshidprobs中的值和rand产生的比较,如果大于随机矩阵对应位置的值,则将其相应位置为1,否则为0
    
%%%%%%%%% 开始反向阶段的计算  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  negdata = 1./(1 + exp(-poshidstates*vishid' - repmat(visbiases,numcases,1)));
  %反向阶段计算可视节点的值
  neghidprobs = 1./(1 + exp(-negdata*vishid - repmat(hidbiases,numcases,1)));    
  %计算隐含层节点的概率值
  negprods  = negdata'*neghidprobs;
  %计算反向散度统计量
  neghidact = sum(neghidprobs);
  negvisact = sum(negdata); 

%%%%%%%%% 反向阶段结束 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  err= sum(sum( (data-negdata).^2 ));%计算训练集中原始数据和重构数据之间的重构误差
  errsum = err + errsum;

   if epoch>5,
     momentum=finalmomentum;         %在迭代更新参数过程中,前4次使用初始动量项,之后使用确定动量项
   else
     momentum=initialmomentum;
   end;

%%%%%%%%%以下代码用于更新权值和偏置%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    vishidinc = momentum*vishidinc + ...%权值更新时的增量
                epsilonw*( (posprods-negprods)/numcases - weightcost*vishid);
    visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact);
    %可视层偏置更新时的增量
    hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact);
    %隐含层偏置更新时的增量
    vishid = vishid + vishidinc;%更新权值
    visbiases = visbiases + visbiasinc;%更新可视层偏置
    hidbiases = hidbiases + hidbiasinc;%更新隐含层偏置

%%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  end
  %fprintf(1, 'epoch %4i error %6.1f  \n', epoch, errsum); 
end;
%%%每次迭代结束后,显示训练集的重构误差
相关文章
|
16天前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的USB摄像头实时视频采集与水果识别matlab仿真
本项目展示了使用MATLAB 2022a和USB摄像头识别显示器上不同水果图片的算法。通过预览图可见其准确识别效果,完整程序无水印。项目采用GoogleNet(Inception-v1)深度卷积神经网络,利用Inception模块捕捉多尺度特征。代码含详细中文注释及操作视频,便于理解和使用。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
8天前
|
机器学习/深度学习 算法
基于小波神经网络的数据分类算法matlab仿真
该程序基于小波神经网络实现数据分类,输入为5个特征值,输出为“是”或“否”。使用MATLAB 2022a版本,50组数据训练,30组数据验证。通过小波函数捕捉数据局部特征,提高分类性能。训练误差和识别结果通过图表展示。
|
9天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
1月前
|
算法
基于多路径路由的全局感知网络流量分配优化算法matlab仿真
本文提出一种全局感知网络流量分配优化算法,针对现代网络中多路径路由的需求,旨在均衡分配流量、减轻拥塞并提升吞吐量。算法基于网络模型G(N, M),包含N节点与M连接,并考虑K种不同优先级的流量。通过迭代调整每种流量在各路径上的分配比例,依据带宽利用率um=Σ(xm,k * dk) / cm来优化网络性能,确保高优先级流量的有效传输同时最大化利用网络资源。算法设定收敛条件以避免陷入局部最优解。
|
1月前
|
算法
蜂窝网络下行链路的覆盖率和速率性能matlab仿真分析
此程序在MATLAB2022a环境下运行,基于随机几何模型评估蜂窝网络的下行链路覆盖率和速率性能。通过模拟不同场景下的基站(BS)配置与噪声情况,计算并绘制了各种条件下的信号干扰加噪声比(SINR)阈值与覆盖率概率的关系图。结果显示,在考虑噪声和不同基站分布模型时,覆盖率有显著差异,提出的随机模型相较于传统网格模型更为保守但也更加贴合实际基站的分布情况。
|
1月前
|
机器学习/深度学习 编解码 Android开发
MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类
MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类
37 0