ChatGPT × R语言 丨实际数据分析过程中,AI能够带来哪些改变?数据框操作案例分享

简介: ChatGPT × R语言 丨实际数据分析过程中,AI能够带来哪些改变?数据框操作案例分享

ChatGPT × R -> YES!

对于非科班出身的生信小白来说,R语言学习中普遍存在的问题是不知道怎么将自己想的内容转变为程序化的语言,举个例子:假如你想把数据表的第一列变成行名,在Excel中只需要鼠标选中复制粘贴即可,但是R语言中要通过代码实现。

如果你和我一样,也使用ChatGPT来作为R语言学习助手,那我觉得这件事情太酷啦。

今天分享一个在实际数据处理过程中使用Ai进行协助的实际案例,本文的代码部分由ChatGPT协助完成,amazing!


快速将变量名添加到第一行

需求:假设有一个数据框,需要将变量名称添加到第一行前面,其他数据不变。

使用 colnames() 函数将数据框的变量名提取出来,然后使用 rbind() 函数将其添加到第一行。以下是示例代码:

# 创建一个数据框
df <- data.frame(a = 1:3, b = 4:6, c = 7:9)
# 提取变量名并添加到第一行
df <- rbind(colnames(df), df)

在上面的代码中,colnames(df) 提取了数据框 df 的变量名,并将其转换为一个长度为列数的字符向量。rbind() 函数将这个字符向量和原始数据框 df 组合成一个新的数据框,其中第一行是变量名。

将某行满足指定值对应列删除

需求:假设数据框中某列为判断标准,现在需要将满足指定条件的行全部删除。

在R语言中,可以使用逻辑向量来选择数据框中符合条件的行或列,使用which()函数和条件语句来获取符合条件的列的索引,然后使用[,-index]来删除这些列。

以下是一个示例代码:

# 创建一个数据框
df <- data.frame(x = c(1,2,3), y = c("NO", "YES", "NO"), z = c("YES", "NO", "YES"))
# 获取符合条件的列的索引
index <- which(df[2,] == "YES")
# 删除这些列
df <- df[,-index]

这将输出一个新的数据框,其中第二行是YES的列已经被删除。

检测字符串中是否存在指定值

需求:假如有一个字符串,比如基因型信息0/0,现在想判断该字符串的格式是否正确,也就是看看是否包含/

在R语言中,可以使用函数grepl()来检测一个字符串中是否存在某个特定的字符或字符串。

grepl()函数返回一个逻辑向量,其中包含了每个字符串是否包含指定的字符或字符串的信息。,以下是一个示例代码:

# 创建一个字符串
string <- "This is a string with a slash / in it."
# 检测字符串中是否包含 "/"
if (grepl("/", string)) {
  print("The string contains a slash.")
} else {
  print("The string does not contain a slash.")
}

这将输出字符串中是否包含 "/" 的信息。如果字符串中包含 "/",则输出"The string contains a slash.",否则输出"The string does not contain a slash."。

批量替换数据指定区域的内容

需求:假如有一个数据框,需要将其中某块区域的值进行替换修改

在R语言中,可以使用函数gsub()来替换字符串中的指定字符。可以使用apply()函数来对数据框中的每个单元格应用gsub()函数。

以下是一个示例代码:

# 创建一个数据框
df <- data.frame(x = c("a/b", "c/d"), y = c("e/f", "g/h"), z = c("i/j", "k/l"))
# 定义替换函数
replace_fun <- function(x) {
  gsub("/", "|", x)
}
# 对数据框应用替换函数
df <- apply(df, c(1,2), replace_fun)
# 转换为数据框
df <- as.data.frame(df)
# 输出结果
df

这将输出一个新的数据框,其中每个单元格中的/已经被替换为|

将缺失值NA替换为指定值

需求:假如有一个数据框,里面包含部分NA缺失值,现在想将这些NA全部替换为指定值。

使用R语言中的函数ifelse()is.na()来将数据框中的NA值替换为“0|0”。具体代码如下:

# 创建一个示例数据框
df <- data.frame(a = c(1, 2, NA, 4),
                 b = c("A", NA, "C", "D"))
# 将NA值替换为“0|0”
df <- data.frame(lapply(df, function(x) ifelse(is.na(x), "0|0", x)))

这里使用了lapply()函数来对数据框中的每一列应用ifelse()函数,如果数据框中的值为NA,则替换为“0|0”,否则保持原值。

最终返回一个新的数据框,其中NA值已被替换为“0|0”。

功能强大,确实有用。对于初学者来说,通过ChatGPT可以快速解决遇到的小问题,只要像微信聊天一样和它对话,就能发挥它的作用。

以往可能需要百度、搜狗、谷歌到处查找的碎片化知识,现在直接由AI整理好提供使用,实现了数据分析高质量发展,极大地解放了生产力。

END

© 素材来源于网络,侵权请联系后台删除

笔记合集,点击直达

相关文章
|
2月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
259 9
Apache Flink:从实时数据分析到实时AI
|
3月前
|
人工智能 自然语言处理 数据可视化
AI 助手带你玩转数据分析!通义灵码保姆级教学 | 共学课2期上线
7月15日20:00,通义灵码联合WaytoAGI社区推出《AI助手带你玩转数据分析》公开课。零门槛、零代码,只需中文指令,即可完成数据读取、分析到报告生成全流程。告别代码恐惧,业务人员也能轻松掌握数据分析,提升职场竞争力。
140 0
|
13天前
|
存储 人工智能 数据挖掘
StarRocks Connect 2025 圆满落幕:AI Native 时代,数据分析未来已来
StarRocks Connect 2025 聚焦“连接”,汇聚全球技术领袖,探讨数据分析的现在与未来。从性能引擎到AI Native平台,StarRocks 持续进化,赋能 Shopee、携程、Cisco 等企业实现高效实时分析,并推动开源生态与商业化协同发展。
|
3月前
|
SQL 人工智能 自然语言处理
AI技术究竟怎样让企业数据分析效率和智能化大幅提升?
本文三桥君介绍了AI驱动的自然语言数据分析系统,通过AI Agents调度、大模型(LLM)生成SQL及检索增强(RAG)技术,实现从自然语言指令到可视化结果的全流程自动化。
94 4
|
7月前
|
SQL 人工智能 算法
TDengine 发布时序数据分析 AI 智能体 TDgpt,核心代码开源
2025 年 3 月 26 日,涛思数据通过线上直播形式正式发布了其新一代时序数据分析 AI 智能体——TDgpt,并同步开源其核心代码(GitHub 地址:https://github.com/taosdata/TDengine)。这一创新功能作为 TDengine 3.3.6.0 的重要组成部分,标志着时序数据库在原生集成 AI 能力方面迈出了关键一步。
388 0
|
3月前
|
机器学习/深度学习 人工智能 监控
数据分析智能体:让AI成为你的数据科学家
作为一名在数据科学领域深耕多年的技术博主,我深刻感受到了AI技术在数据分析领域的革命性变化。从最初的手工编写SQL查询、绘制图表,到如今AI智能体能够自主完成复杂的数据探索、建模和洞察提取,这种转变不仅仅是技术进步,更是数据科学工作范式的根本性变革。 数据分析智能体(Data Analysis Agent)代表了数据科学发展的新阶段,它将传统的数据分析师、统计学家和机器学习工程师的核心能力集成到一个智能系统中。这个系统不仅能够理解业务需求,自动执行数据预处理,还能够选择合适的分析方法、构建预测模型,并生成易于理解的洞察报告。
486 1
|
5月前
|
人工智能 自然语言处理 Prometheus
不懂 PromQL,AI 智能体帮你玩转大规模指标数据分析
PromQL AI 智能体上线。本文将从自然语言生成 PromQL 实践视角,探讨如何构建知识库、与大模型进行交互、最终生成符合需求的 PromQL 语句。本文还介绍了在 MCP 和云监控控制台下使用 AI 智能体的用例。
446 51
|
3月前
|
机器学习/深度学习 人工智能 文字识别
浏览器AI模型插件下载,支持chatgpt、claude、grok、gemini、DeepSeek等顶尖AI模型!
极客侧边栏是一款浏览器插件,集成ChatGPT、Claude、Grok、Gemini等全球顶尖AI模型,支持网页提问、文档分析、图片生成、智能截图、内容总结等功能。无需切换页面,办公写作效率倍增。内置书签云同步与智能整理功能,管理更高效。跨平台使用,安全便捷,是AI时代必备工具!
223 8
|
4月前
|
数据采集 人工智能 数据可视化
如何让AI写出高质量的数据分析报告?DataV-Note的评估体系揭秘
本文围绕DataV-Note智能分析创作平台的评估体系建设展开,旨在探索如何在AI技术快速发展的背景下,构建一套科学、可量化、多维度的数据分析报告评估体系。
269 10

热门文章

最新文章