软件测试|Python科学计算神器numpy教程(三)

简介: 软件测试|Python科学计算神器numpy教程(三)

image.png

NumPy创建区间数组的强大功能
前言
NumPy是Python中最受欢迎的科学计算库之一,它提供了许多强大的功能来处理和操作数组数据。在本文中,我们将重点介绍NumPy中创建区间数组的功能,这使得我们可以轻松地生成指定范围内的数值序列,为我们的数据分析和科学计算任务提供了便利。

Numpy简介
NumPy(Numerical Python)是一个开源的Python库,它提供了高性能的多维数组对象和用于处理这些数组的工具。NumPy是科学计算和数据分析的核心库之一,它还与其他库(如Pandas和Matplotlib)紧密集成,为数据科学家和研究人员提供了强大的工具集。

为什么要创建区间数组
在数据分析和科学计算中,我们经常需要生成一系列特定范围内的连续数值。例如,我们可能需要生成从0到100的整数序列,或者在-1到1之间均匀分布的浮点数序列。这些序列可以用于模拟实验数据、创建图表或进行数值计算等多个应用场景。

创建区间数组的方法
numpy提供了多种方法来创建区间数组,下面我们来进行逐一的介绍

使用arange函数:arange(start, stop, step)函数可以生成从start到stop(不包括stop)的等间隔数值序列,步长为step。例如,np.arange(0, 10, 2)将生成一个从0到10(不包括10)的等间隔序列,步长为2,结果为[0, 2, 4, 6, 8]

使用linspace函数:linspace(start, stop, num)函数可以生成从start到stop(包括start和stop)的等间隔数值序列,序列的长度为num。例如,np.linspace(0, 1, 5)将生成一个从0到1(包括0和1)的等间隔序列,长度为5,结果为[0. , 0.25, 0.5 , 0.75, 1. ]

使用logspace函数:logspace(start, stop, num, base)函数可以生成从base的start次方到base的stop次方(包括start和stop)的对数间隔数值序列,序列的长度为num。例如,np.logspace(0, 2, 5)将生成一个从100到102(包括100和102)的对数间隔序列,长度为5,结果为[ 1., 3.16227766, 10., 31.6227766, 100.]

使用示例
生成一个包含10个均匀分布的浮点数的数组:
import numpy as np
arr = np.linspace(0, 1, 10)
print(arr)


输出结果如下:
[0. 0.11111111 0.22222222 0.33333333 0.44444444 0.55555556
0.66666667 0.77777778 0.88888889 1. ]
生成一个包含1到100的整数的数组:
import numpy as np
arr = np.arange(1, 101)
print(arr)


输出结果如下:
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100]
生成一个base = 2 的对数函数数组:
import numpy as np
a = np.logspace(1,10,num = 10, base = 2)
print(a)


输出结果如下:
[ 2. 4. 8. 16. 32. 64. 128. 256. 512. 1024.]
总结
NumPy提供了强大的功能来创建区间数组,我们可以使用arange、linspace和logspace等函数轻松地生成指定范围内的数值序列。这些区间数组对于数据分析、科学计算和可视化等任务非常有用,为我们提供了更高效和便捷的编程工具。

通过掌握NumPy创建区间数组的方法,我们能够更好地利用NumPy库进行数据分析和科学计算,从而加快工作流程并提高效率。无论是处理大量数据、进行数值模拟还是进行统计分析,NumPy都是不可或缺的工具之一。

相关文章
|
9天前
|
Python
NumPy 教程 之 NumPy 统计函数 9
NumPy提供了多种统计函数,如计算数组中的最小值、最大值、百分位数、标准差及方差等。其中,标准差是一种衡量数据平均值分散程度的指标,它是方差的算术平方根。例如,对于数组[1,2,3,4],其标准差可通过计算各值与均值2.5的差的平方的平均数的平方根得出,结果为1.1180339887498949。示例代码如下: ```python import numpy as np print(np.std([1,2,3,4])) ``` 运行输出即为:1.1180339887498949。
103 50
|
9天前
|
Python
NumPy 教程 之 NumPy 统计函数 10
NumPy统计函数,包括查找数组中的最小值、最大值、百分位数、标准差和方差等。方差表示样本值与平均值之差的平方的平均数,而标准差则是方差的平方根。例如,`np.var([1,2,3,4])` 的方差为 1.25。
93 48
|
4天前
|
存储 Python
NumPy 教程 之 NumPy 字节交换 1
本教程介绍了NumPy中的字节交换功能。字节顺序规定了多字节对象在内存中的存储规则,分为大端模式和小端模式。大端模式下,高字节存于低地址;而在小端模式下则相反。`numpy.ndarray.byteswap()`函数用于对ndarray中的每个元素进行字节序转换。示例展示了如何使用该函数实现字节交换,并提供了具体输出结果。
28 11
|
4天前
|
Python
NumPy 教程 之 NumPy 副本和视图 1
NumPy 副本和视图教程介绍:副本是对原始数据的完全拷贝,修改副本不会影响原始数据;而视图则是原始数据的引用,修改视图会影响原始数据。视图通常通过切片操作或 `ndarray.view()` 方法获得,副本则通过 `ndarray.copy()` 或 `deepCopy()` 函数生成。简单赋值不创建副本,而是共享原始数据。
25 9
|
3天前
|
Python
NumPy 教程 之 NumPy 副本和视图 3
副本是对原始数据的完全拷贝,修改副本不影响原始数据;而视图则是原始数据的别名,修改视图会影响原始数据。视图通常在切片操作或使用`view()`函数时产生,副本则在使用`copy()`函数或Python序列切片操作及`deepCopy()`函数时生成。示例展示了如何使用`view()`创建数组视图,并说明了其对原始数组形状的影响。
16 6
|
5天前
|
机器学习/深度学习 搜索推荐 算法
NumPy 教程 之 NumPy 排序、条件筛选函数 8
NumPy提供了多种排序方法,包括快速排序、归并排序及堆排序,各有不同的速度、最坏情况性能、工作空间和稳定性特点。此外,NumPy还提供了`numpy.extract()`函数,可以根据特定条件从数组中抽取元素。例如,在一个3x3数组中,通过定义条件选择偶数元素,并使用该函数提取这些元素。示例输出为:[0., 2., 4., 6., 8.]。
17 8
|
1天前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 2
不同于ndarray,matlib函数生成的是矩阵形式。教程中详细解释了矩阵的概念,并介绍了转置矩阵的实现方式,使用T属性或函数实现。此外,还展示了如何利用`matlib.empty()`创建指定形状的新矩阵,并可选择数据类型及顺序。最后通过示例演示了矩阵填充随机数据的方法。
11 3
|
2天前
|
Python
NumPy 教程 之 NumPy 副本和视图 5
NumPy副本和视图教程介绍副本与视图的区别:副本是对原始数据的完全拷贝,修改副本不会影响原始数据;而视图则是对原始数据的引用,修改视图会影响原始数据。视图通常在切片操作或使用`view()`函数时产生;副本则在序列切片操作、调用`deepCopy()`或使用`copy()`函数时生成。示例展示了使用`copy()`函数创建副本,并验证了修改副本不会改变原始数据。
17 4
|
5天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
【9月更文挑战第5天】性能测试是确保应用在高负载下稳定运行的关键。本文介绍Apache JMeter和Locust两款常用性能测试工具,帮助识别并解决性能瓶颈。JMeter适用于测试静态和动态资源,而Locust则通过Python脚本模拟HTTP请求。文章详细讲解了安装、配置及使用方法,并提供了实战案例,帮助你掌握性能测试技巧,提升应用性能。通过分析测试结果、模拟并发、检查资源使用情况及代码优化,确保应用在高并发环境下表现优异。
24 5
|
8天前
|
机器学习/深度学习 搜索推荐 算法
NumPy 教程 之 NumPy 排序、条件筛选函数 2
介绍NumPy` 中的排序方法与条件筛选函数。通过对比快速排序、归并排序及堆排序的速度、最坏情况性能、工作空间需求和稳定性,帮助读者选择合适的排序算法。此外,还深入讲解了 `numpy.argsort()` 的使用方法,并通过具体实例展示了如何利用该函数获取数组值从小到大的索引值,并据此重构原数组,使得其变为有序状态。对于学习 `NumPy` 排序功能来说,本教程提供了清晰且实用的指导。
16 7
下一篇
DDNS