GoogLeNet InceptionV3代码复现+超详细注释(PyTorch)

本文涉及的产品
简介: GoogLeNet InceptionV3代码复现+超详细注释(PyTorch)

上篇介绍了InceptionV3论文,指路:经典神经网络论文超详细解读(四)——InceptionV2-V3学习笔记(翻译+精读+代码复现)

本篇我们来复现一下InceptionV3代码


InceptionV1回顾:GoogLeNet InceptionV1代码复现+超详细注释(PyTorch)



第一步:定义基础卷积模块

卷积模块较上次多了BN层

BatchNorm2d()函数:

作用:卷积层之后总会添加BatchNorm2d进行数据的归一化处理,这使得数据在进行Relu之前不会因为数据过大而导致网络性能的不稳定

举例:

BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

1.num_features一般输入参数的shape为batch_size*num_features*height*width,即为其中特征的数量,即为输入BN层的通道数;

2.eps分母中添加的一个值,目的是为了计算的稳定性,默认为:1e-5,避免分母为0;

3.momentum一个用于运行过程中均值和方差的一个估计参数(可以理解是一个稳定系数,类似于SGD中的momentum的系数);

4.affine当设为true时,会给定可以学习的系数矩阵gamma和beta

class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)

第二步:定义Inceptionv3模块

PyTorch提供的有六种基本的Inception模块,分别是InceptionA——InceptionE。

InceptionA

得到输入大小不变,通道数为224+pool_features的特征图。

假如输入为(35, 35, 192)的数据:

第一个branch:

经过branch1x1为带有64个1*1的卷积核,所以生成第一张特征图(35, 35, 64);

第二个branch:

首先经过branch5x5_1为带有48个1*1的卷积核,所以第二张特征图(35, 35, 48),

然后经过branch5x5_2为带有64个5*5大小且填充为2的卷积核,特征图大小依旧不变,因此第二张特征图最终为(35, 35, 64);

第三个branch:

首先经过branch3x3dbl_1为带有64个1*1的卷积核,所以第三张特征图(35, 35, 64),

然后经过branch3x3dbl_2为带有96个3*3大小且填充为1的卷积核,特征图大小依旧不变,因此进一步生成第三张特征图(35, 35, 96),

最后经过branch3x3dbl_3为带有96个3*3大小且填充为1的卷积核,特征图大小和通道数不变,因此第三张特征图最终为(35, 35, 96);

第四个branch:

首先经过avg_pool2d,其中池化核3*3,步长为1,填充为1,所以第四张特征图大小不变,通道数不变,第四张特征图为(35, 35, 192),

然后经过branch_pool为带有pool_features个的1*1卷积,因此第四张特征图最终为(35, 35, pool_features);

最后将四张特征图进行拼接,最终得到(35,35,64+64+96+pool_features)的特征图。

 

'''---InceptionA---'''
class InceptionA(nn.Module):
    def __init__(self, in_channels, pool_features, conv_block=None):
        super(InceptionA, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1)
        self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)
        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)
        self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
    def _forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)
        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
        outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
        return outputs
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)    

InceptionB

得到输入大小减半,通道数为480的特征图,

假如输入为(35, 35, 288)的数据:

第一个branch:
经过branch1x1为带有384个3*3大小且步长2的卷积核,(35-3+2*0)/2+1=17所以生成第一张特征图(17, 17, 384);

第二个branch:
首先经过branch3x3dbl_1为带有64个1*1的卷积核,特征图大小不变,即(35, 35, 64);
然后经过branch3x3dbl_2为带有96个3*3大小填充1的卷积核,特征图大小不变,即(35, 35, 96),
再经过branch3x3dbl_3为带有96个3*3大小步长2的卷积核,(35-3+2*0)/2+1=17,即第二张特征图为(17, 17, 96);
第三个branch:
经过max_pool2d,池化核大小3*3,步长为2,所以是二倍最大值下采样,通道数保持不变,第三张特征图为(17, 17, 288);
最后将三张特征图进行拼接,最终得到(17(即Hin/2),17(即Win/2),384+96+288(Cin)=768)的特征图。

 

'''---InceptionB---'''
class InceptionB(nn.Module):
    def __init__(self, in_channels, conv_block=None):
        super(InceptionB, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)
        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)
    def _forward(self, x):
        branch3x3 = self.branch3x3(x)
        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch3x3dbl, branch_pool]
        return outputs
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)

InceptionC

得到输入大小不变,通道数为768的特征图。

假如输入为(17,17, 768)的数据:

第一个branch:

首先经过branch1x1为带有192个1*1的卷积核,所以生成第一张特征图(17,17, 192);

第二个branch:

首先经过branch7x7_1为带有c7个1*1的卷积核,所以第二张特征图(17,17, c7),

然后经过branch7x7_2为带有c7个1*7大小且填充为0*3的卷积核,特征图大小不变,进一步生成第二张特征图(17,17, c7),

然后经过branch7x7_3为带有192个7*1大小且填充为3*0的卷积核,特征图大小不变,进一步生成第二张特征图(17,17, 192),因此第二张特征图最终为(17,17, 192);

第三个branch:

首先经过branch7x7dbl_1为带有c7个1*1的卷积核,所以第三张特征图(17,17, c7),

然后经过branch7x7dbl_2为带有c7个7*1大小且填充为3*0的卷积核,特征图大小不变,进一步生成第三张特征图(17,17, c7),

然后经过branch7x7dbl_3为带有c7个1*7大小且填充为0*3的卷积核,特征图大小不变,进一步生成第三张特征图(17,17, c7),

然后经过branch7x7dbl_4为带有c7个7*1大小且填充为3*0的卷积核,特征图大小不变,进一步生成第三张特征图(17,17, c7),

然后经过branch7x7dbl_5为带有192个1*7大小且填充为0*3的卷积核,特征图大小不变,因此第二张特征图最终为(17,17, 192);

第四个branch:

首先经过avg_pool2d,其中池化核3*3,步长为1,填充为1,所以第四张特征图大小不变,通道数不变,第四张特征图为(17,17, 768),

然后经过branch_pool为带有192个的1*1卷积,因此第四张特征图最终为(17,17, 192);

最后将四张特征图进行拼接,最终得到(17, 17, 192+192+192+192=768)的特征图。

'''---InceptionC---'''
class InceptionC(nn.Module):
    def __init__(self, in_channels, channels_7x7, conv_block=None):
        super(InceptionC, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)
        c7 = channels_7x7
        self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1)
        self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1)
        self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))
        self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
    def _forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)
        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return outputs
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)

InceptionD

得到输入大小减半,通道数512的特征图,

假如输入为(17, 17, 768)的数据:

第一个branch:

首先经过branch3x3_1为带有192个1*1的卷积核,所以生成第一张特征图(17, 17, 192);

然后经过branch3x3_2为带有320个3*3大小步长为2的卷积核,(17-3+2*0)/2+1=8,最终第一张特征图(8, 8, 320);

第二个branch:

首先经过branch7x7x3_1为带有192个1*1的卷积核,特征图大小不变,即(17, 17, 192);

然后经过branch7x7x3_2为带有192个1*7大小且填充为0*3的卷积核,特征图大小不变,进一步生成第三张特征图(17,17, 192);

再经过branch7x7x3_3为带有192个7*1大小且填充为3*0的卷积核,特征图大小不变,进一步生成第三张特征图(17,17, 192);

最后经过branch7x7x3_4为带有192个3*3大小步长为2的卷积核,最终第一张特征图(8, 8, 192);

第三个branch:

首先经过max_pool2d,池化核大小3*3,步长为2,所以是二倍最大值下采样,通道数保持不变,第三张特征图为(8, 8, 768);

最后将三张特征图进行拼接,最终得到(8(即Hin/2),8(即Win/2),320+192+768(Cin)=1280)的特征图。

'''---InceptionD---'''
class InceptionD(nn.Module):
    def __init__(self, in_channels, conv_block=None):
        super(InceptionD, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)
        self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)
    def _forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch7x7x3, branch_pool]
        return outputs
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)

InceptionE

最终得到输入大小不变,通道数为2048的特征图。

假如输入为(8,8, 1280)的数据:

第一个branch:

首先经过branch1x1为带有320个1*1的卷积核,所以生成第一张特征图(8, 8, 320);

第二个branch:

首先经过branch3x3_1为带有384个1*1的卷积核,所以第二张特征图(8, 8, 384),

经过分支branch3x3_2a为带有384个1*3大小且填充为0*1的卷积核,特征图大小不变,进一步生成特征图(8,8, 384),

经过分支branch3x3_2b为带有192个3*1大小且填充为1*0的卷积核,特征图大小不变,进一步生成特征图(8,8, 384),

因此第二张特征图最终为两个分支拼接(8,8, 384+384=768);

第三个branch:

首先经过branch3x3dbl_1为带有448个1*1的卷积核,所以第三张特征图(8,8, 448),

然后经过branch3x3dbl_2为带有384个3*3大小且填充为1的卷积核,特征图大小不变,进一步生成第三张特征图(8,8, 384),

经过分支branch3x3dbl_3a为带有384个1*3大小且填充为0*1的卷积核,特征图大小不变,进一步生成特征图(8,8, 384),

经过分支branch3x3dbl_3b为带有384个3*1大小且填充为1*0的卷积核,特征图大小不变,进一步生成特征图(8,8, 384),

因此第三张特征图最终为两个分支拼接(8,8, 384+384=768);

第四个branch:

首先经过avg_pool2d,其中池化核3*3,步长为1,填充为1,所以第四张特征图大小不变,通道数不变,第四张特征图为(8,8, 1280),

然后经过branch_pool为带有192个的1*1卷积,因此第四张特征图最终为(8,8, 192);

最后将四张特征图进行拼接,最终得到(8, 8, 320+768+768+192=2048)的特征图。

 

'''---InceptionE---'''
class InceptionE(nn.Module):
    def __init__(self, in_channels, conv_block=None):
        super(InceptionE, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)
        self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1)
        self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
        self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1)
        self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
        self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
    def _forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)
        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return outputs
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)

第三步:定义辅助分类器InceptionAux

class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes, conv_block=None):
        super(InceptionAux, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.conv0 = conv_block(in_channels, 128, kernel_size=1)
        self.conv1 = conv_block(128, 768, kernel_size=5)
        self.conv1.stddev = 0.01
        self.fc = nn.Linear(768, num_classes)
        self.fc.stddev = 0.001
    def forward(self, x):
        # N x 768 x 17 x 17
        x = F.avg_pool2d(x, kernel_size=5, stride=3)
        # N x 768 x 5 x 5
        x = self.conv0(x)
        # N x 128 x 5 x 5
        x = self.conv1(x)
        # N x 768 x 1 x 1
        # Adaptive average pooling
        x = F.adaptive_avg_pool2d(x, (1, 1))
        # N x 768 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 768
        x = self.fc(x)
        # N x 1000
        return x

第四步:搭建GoogLeNet网络

'''-----------------------搭建GoogLeNet网络--------------------------'''
class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True, transform_input=False,
                 inception_blocks=None):
        super(GoogLeNet, self).__init__()
        if inception_blocks is None:
            inception_blocks = [
                BasicConv2d, InceptionA, InceptionB, InceptionC,
                InceptionD, InceptionE, InceptionAux
            ]
        assert len(inception_blocks) == 7
        conv_block = inception_blocks[0]
        inception_a = inception_blocks[1]
        inception_b = inception_blocks[2]
        inception_c = inception_blocks[3]
        inception_d = inception_blocks[4]
        inception_e = inception_blocks[5]
        inception_aux = inception_blocks[6]
        self.aux_logits = aux_logits
        self.transform_input = transform_input
        self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2)
        self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)
        self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)
        self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)
        self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)
        self.Mixed_5b = inception_a(192, pool_features=32)
        self.Mixed_5c = inception_a(256, pool_features=64)
        self.Mixed_5d = inception_a(288, pool_features=64)
        self.Mixed_6a = inception_b(288)
        self.Mixed_6b = inception_c(768, channels_7x7=128)
        self.Mixed_6c = inception_c(768, channels_7x7=160)
        self.Mixed_6d = inception_c(768, channels_7x7=160)
        self.Mixed_6e = inception_c(768, channels_7x7=192)
        if aux_logits:
            self.AuxLogits = inception_aux(768, num_classes)
        self.Mixed_7a = inception_d(768)
        self.Mixed_7b = inception_e(1280)
        self.Mixed_7c = inception_e(2048)
        self.fc = nn.Linear(2048, num_classes)
'''输入(229,229,3)的数据,首先归一化输入,经过5个卷积,2个最大池化层。'''
    def _forward(self, x):
        # N x 3 x 299 x 299
        x = self.Conv2d_1a_3x3(x)
        # N x 32 x 149 x 149
        x = self.Conv2d_2a_3x3(x)
        # N x 32 x 147 x 147
        x = self.Conv2d_2b_3x3(x)
        # N x 64 x 147 x 147
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        # N x 64 x 73 x 73
        x = self.Conv2d_3b_1x1(x)
        # N x 80 x 73 x 73
        x = self.Conv2d_4a_3x3(x)
        # N x 192 x 71 x 71
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        '''然后经过3个InceptionA结构,
        1个InceptionB,3个InceptionC,1个InceptionD,2个InceptionE,
        其中InceptionA,辅助分类器AuxLogits以经过最后一个InceptionC的输出为输入。'''
        # 35 x 35 x 192
        x = self.Mixed_5b(x)  # InceptionA(192, pool_features=32)
        # 35 x 35 x 256
        x = self.Mixed_5c(x)  # InceptionA(256, pool_features=64)
        # 35 x 35 x 288
        x = self.Mixed_5d(x)  # InceptionA(288, pool_features=64)
        # 35 x 35 x 288
        x = self.Mixed_6a(x)  # InceptionB(288)
        # 17 x 17 x 768
        x = self.Mixed_6b(x)  # InceptionC(768, channels_7x7=128)
        # 17 x 17 x 768
        x = self.Mixed_6c(x)  # InceptionC(768, channels_7x7=160)
        # 17 x 17 x 768
        x = self.Mixed_6d(x)  # InceptionC(768, channels_7x7=160)
        # 17 x 17 x 768
        x = self.Mixed_6e(x)  # InceptionC(768, channels_7x7=192)
        # 17 x 17 x 768
        if self.training and self.aux_logits:
            aux = self.AuxLogits(x)  # InceptionAux(768, num_classes)
        # 17 x 17 x 768
        x = self.Mixed_7a(x)  # InceptionD(768)
        # 8 x 8 x 1280
        x = self.Mixed_7b(x)  # InceptionE(1280)
        # 8 x 8 x 2048
        x = self.Mixed_7c(x)  # InceptionE(2048)
        '''进入分类部分。
        经过平均池化层+dropout+打平+全连接层输出'''
        x = F.adaptive_avg_pool2d(x, (1, 1))
        # N x 2048 x 1 x 1
        x = F.dropout(x, training=self.training)
        # N x 2048 x 1 x 1
        x = torch.flatten(x, 1)#Flatten()就是将2D的特征图压扁为1D的特征向量,是展平操作,进入全连接层之前使用,类才能写进nn.Sequential
        # N x 2048
        x = self.fc(x)
        # N x 1000 (num_classes)
        return x, aux
    def forward(self, x):
        x, aux = self._forward(x)
        return x, aux

第五步*:网络结构参数初始化

    '''-----------------------网络结构参数初始化--------------------------'''
    # 目的:使网络更好收敛,准确率更高
    def _initialize_weights(self):  # 将各种初始化方法定义为一个initialize_weights()的函数并在模型初始后进行使用。
        # 遍历网络中的每一层
        for m in self.modules():
            # isinstance(object, type),如果指定的对象拥有指定的类型,则isinstance()函数返回True
            '''如果是卷积层Conv2d'''
            if isinstance(m, nn.Conv2d):
                # Kaiming正态分布方式的权重初始化
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                '''判断是否有偏置:'''
                # 如果偏置不是0,将偏置置成0,对偏置进行初始化
                if m.bias is not None:
                    # torch.nn.init.constant_(tensor, val),初始化整个矩阵为常数val
                    nn.init.constant_(m.bias, 0)
                '''如果是全连接层'''
            elif isinstance(m, nn.Linear):
                # init.normal_(tensor, mean=0.0, std=1.0),使用从正态分布中提取的值填充输入张量
                # 参数:tensor:一个n维Tensor,mean:正态分布的平均值,std:正态分布的标准差
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

实现效果


完整代码

from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
'''-------------------------第一步:定义基础卷积模块-------------------------------'''
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)
    '''-----------------第二步:定义Inceptionv3模块---------------------'''
'''---InceptionA---'''
class InceptionA(nn.Module):
    def __init__(self, in_channels, pool_features, conv_block=None):
        super(InceptionA, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1)
        self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)
        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)
        self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
    def _forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)
        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
        outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
        return outputs
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
'''---InceptionB---'''
class InceptionB(nn.Module):
    def __init__(self, in_channels, conv_block=None):
        super(InceptionB, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)
        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)
    def _forward(self, x):
        branch3x3 = self.branch3x3(x)
        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch3x3dbl, branch_pool]
        return outputs
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
'''---InceptionC---'''
class InceptionC(nn.Module):
    def __init__(self, in_channels, channels_7x7, conv_block=None):
        super(InceptionC, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)
        c7 = channels_7x7
        self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1)
        self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1)
        self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))
        self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
    def _forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)
        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return outputs
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
'''---InceptionD---'''
class InceptionD(nn.Module):
    def __init__(self, in_channels, conv_block=None):
        super(InceptionD, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)
        self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)
    def _forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch7x7x3, branch_pool]
        return outputs
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
'''---InceptionE---'''
class InceptionE(nn.Module):
    def __init__(self, in_channels, conv_block=None):
        super(InceptionE, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)
        self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1)
        self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
        self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1)
        self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
        self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
    def _forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)
        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return outputs
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
'''-------------------第三步:定义辅助分类器InceptionAux-----------------------'''
class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes, conv_block=None):
        super(InceptionAux, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.conv0 = conv_block(in_channels, 128, kernel_size=1)
        self.conv1 = conv_block(128, 768, kernel_size=5)
        self.conv1.stddev = 0.01
        self.fc = nn.Linear(768, num_classes)
        self.fc.stddev = 0.001
    def forward(self, x):
        # N x 768 x 17 x 17
        x = F.avg_pool2d(x, kernel_size=5, stride=3)
        # N x 768 x 5 x 5
        x = self.conv0(x)
        # N x 128 x 5 x 5
        x = self.conv1(x)
        # N x 768 x 1 x 1
        # Adaptive average pooling
        x = F.adaptive_avg_pool2d(x, (1, 1))
        # N x 768 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 768
        x = self.fc(x)
        # N x 1000
        return x
'''-----------------------第四步:搭建GoogLeNet网络--------------------------'''
class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True, transform_input=False,
                 inception_blocks=None):
        super(GoogLeNet, self).__init__()
        if inception_blocks is None:
            inception_blocks = [
                BasicConv2d, InceptionA, InceptionB, InceptionC,
                InceptionD, InceptionE, InceptionAux
            ]
        assert len(inception_blocks) == 7
        conv_block = inception_blocks[0]
        inception_a = inception_blocks[1]
        inception_b = inception_blocks[2]
        inception_c = inception_blocks[3]
        inception_d = inception_blocks[4]
        inception_e = inception_blocks[5]
        inception_aux = inception_blocks[6]
        self.aux_logits = aux_logits
        self.transform_input = transform_input
        self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2)
        self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)
        self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)
        self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)
        self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)
        self.Mixed_5b = inception_a(192, pool_features=32)
        self.Mixed_5c = inception_a(256, pool_features=64)
        self.Mixed_5d = inception_a(288, pool_features=64)
        self.Mixed_6a = inception_b(288)
        self.Mixed_6b = inception_c(768, channels_7x7=128)
        self.Mixed_6c = inception_c(768, channels_7x7=160)
        self.Mixed_6d = inception_c(768, channels_7x7=160)
        self.Mixed_6e = inception_c(768, channels_7x7=192)
        if aux_logits:
            self.AuxLogits = inception_aux(768, num_classes)
        self.Mixed_7a = inception_d(768)
        self.Mixed_7b = inception_e(1280)
        self.Mixed_7c = inception_e(2048)
        self.fc = nn.Linear(2048, num_classes)
    '''输入(229,229,3)的数据,首先归一化输入,经过5个卷积,2个最大池化层。'''
    def _forward(self, x):
        # N x 3 x 299 x 299
        x = self.Conv2d_1a_3x3(x)
        # N x 32 x 149 x 149
        x = self.Conv2d_2a_3x3(x)
        # N x 32 x 147 x 147
        x = self.Conv2d_2b_3x3(x)
        # N x 64 x 147 x 147
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        # N x 64 x 73 x 73
        x = self.Conv2d_3b_1x1(x)
        # N x 80 x 73 x 73
        x = self.Conv2d_4a_3x3(x)
        # N x 192 x 71 x 71
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        '''然后经过3个InceptionA结构,
        1个InceptionB,3个InceptionC,1个InceptionD,2个InceptionE,
        其中InceptionA,辅助分类器AuxLogits以经过最后一个InceptionC的输出为输入。'''
        # 35 x 35 x 192
        x = self.Mixed_5b(x)  # InceptionA(192, pool_features=32)
        # 35 x 35 x 256
        x = self.Mixed_5c(x)  # InceptionA(256, pool_features=64)
        # 35 x 35 x 288
        x = self.Mixed_5d(x)  # InceptionA(288, pool_features=64)
        # 35 x 35 x 288
        x = self.Mixed_6a(x)  # InceptionB(288)
        # 17 x 17 x 768
        x = self.Mixed_6b(x)  # InceptionC(768, channels_7x7=128)
        # 17 x 17 x 768
        x = self.Mixed_6c(x)  # InceptionC(768, channels_7x7=160)
        # 17 x 17 x 768
        x = self.Mixed_6d(x)  # InceptionC(768, channels_7x7=160)
        # 17 x 17 x 768
        x = self.Mixed_6e(x)  # InceptionC(768, channels_7x7=192)
        # 17 x 17 x 768
        if self.training and self.aux_logits:
            aux = self.AuxLogits(x)  # InceptionAux(768, num_classes)
        # 17 x 17 x 768
        x = self.Mixed_7a(x)  # InceptionD(768)
        # 8 x 8 x 1280
        x = self.Mixed_7b(x)  # InceptionE(1280)
        # 8 x 8 x 2048
        x = self.Mixed_7c(x)  # InceptionE(2048)
        '''进入分类部分。
        经过平均池化层+dropout+打平+全连接层输出'''
        x = F.adaptive_avg_pool2d(x, (1, 1))
        # N x 2048 x 1 x 1
        x = F.dropout(x, training=self.training)
        # N x 2048 x 1 x 1
        x = torch.flatten(x, 1)#Flatten()就是将2D的特征图压扁为1D的特征向量,是展平操作,进入全连接层之前使用,类才能写进nn.Sequential
        # N x 2048
        x = self.fc(x)
        # N x 1000 (num_classes)
        return x, aux
    def forward(self, x):
        x, aux = self._forward(x)
        return x, aux
    '''-----------------------第五步:网络结构参数初始化--------------------------'''
    # 目的:使网络更好收敛,准确率更高
    def _initialize_weights(self):  # 将各种初始化方法定义为一个initialize_weights()的函数并在模型初始后进行使用。
        # 遍历网络中的每一层
        for m in self.modules():
            # isinstance(object, type),如果指定的对象拥有指定的类型,则isinstance()函数返回True
            '''如果是卷积层Conv2d'''
            if isinstance(m, nn.Conv2d):
                # Kaiming正态分布方式的权重初始化
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                '''判断是否有偏置:'''
                # 如果偏置不是0,将偏置置成0,对偏置进行初始化
                if m.bias is not None:
                    # torch.nn.init.constant_(tensor, val),初始化整个矩阵为常数val
                    nn.init.constant_(m.bias, 0)
                '''如果是全连接层'''
            elif isinstance(m, nn.Linear):
                # init.normal_(tensor, mean=0.0, std=1.0),使用从正态分布中提取的值填充输入张量
                # 参数:tensor:一个n维Tensor,mean:正态分布的平均值,std:正态分布的标准差
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)
'''---------------------------------------显示网络结构-------------------------------'''
if __name__ == '__main__':
    net = GoogLeNet(1000).cuda()
    from torchsummary import summary
    summary(net, (3, 299, 299))



番外

上面实现的是torchvision中的Inception v3结构,和论文中不太一样。因此我上GitHub上找到了论文复现的代码。先放个链接:https://github.com/AlgorithmicIntelligence/GoogLeNetv3_Pytorch/tree/master/models

(论文中结构)

代码

import torch
import torch.nn as nn
from functools import partial
# functools.partial():减少某个函数的参数个数。 partial() 函数允许你给一个或多个参数设置固定的值,减少接下来被调用时的参数个数
'''-----------------------第一步:定义卷积模块-----------------------'''
#基础卷积模块
class Conv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output=False):
        super(Conv2d, self).__init__()
        '''卷积层'''
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
        '''输出层'''
        self.output = output
        if self.output == False:
            '''bn层'''
            self.bn = nn.BatchNorm2d(out_channels)
            '''relu层'''
            self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x = self.conv(x)
        if self.output:
            return x
        else:
            x = self.bn(x)
            x = self.relu(x)
            return x
class Separable_Conv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(Separable_Conv2d, self).__init__()
        self.conv_h = nn.Conv2d(in_channels, in_channels, (kernel_size, 1), stride=(stride, 1), padding=(padding, 0))
        self.conv_w = nn.Conv2d(in_channels, out_channels, (1, kernel_size), stride=(1, stride), padding=(0, padding))
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x = self.conv_h(x)
        x = self.conv_w(x)
        x = self.bn(x)
        x = self.relu(x)
        return x
class Concat_Separable_Conv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(Concat_Separable_Conv2d, self).__init__()
        self.conv_h = nn.Conv2d(in_channels, out_channels, (kernel_size, 1), stride=(stride, 1), padding=(padding, 0))
        self.conv_w = nn.Conv2d(in_channels, out_channels, (1, kernel_size), stride=(1, stride), padding=(0, padding))
        self.bn = nn.BatchNorm2d(out_channels * 2)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x_h = self.conv_h(x)
        x_w = self.conv_w(x)
        x = torch.cat([x_h, x_w], dim=1)
        x = self.bn(x)
        x = self.relu(x)
        return x
#Flatten()就是将2D的特征图压扁为1D的特征向量,是展平操作,进入全连接层之前使用,类才能写进nn.Sequential
class Flatten(nn.Module):
    # 传入输入维度和输出维度
    def __init__(self):
        # 调用父类构造函数
        super(Flatten, self).__init__()
    # 实现forward函数
    def forward(self, x):
        # 保存batch维度,后面的维度全部压平
        return torch.flatten(x, 1)
#Squeeze()降维
class Squeeze(nn.Module):
    def __init__(self):
        super(Squeeze, self).__init__()
    def forward(self, x):
        return torch.squeeze(x)
'''-----------------------搭建GoogLeNet网络--------------------------'''
class GoogLeNet(nn.Module):
    def __init__(self, num_classes, mode='train'):
        super(GoogLeNet, self).__init__()
        self.num_classes = num_classes
        self.mode = mode
        self.layers = nn.Sequential(
            Conv2d(3, 32, 3, stride=2),
            Conv2d(32, 32, 3, stride=1),
            Conv2d(32, 64, 3, stride=1, padding=1),
            nn.MaxPool2d(kernel_size=3, stride=2),
            Conv2d(64, 80, kernel_size=3),
            Conv2d(80, 192, kernel_size=3, stride=2),
            Conv2d(192, 288, kernel_size=3, stride=1, padding=1),
            #输入:35*35*288。将5*5用两个3*3代替
            Inceptionv3(288, 64, 48, 64, 64, 96, 64, mode='1'),  # 3a
            Inceptionv3(288, 64, 48, 64, 64, 96, 64, mode='1'),  # 3b
            Inceptionv3(288, 0, 128, 384, 64, 96, 0, stride=2, pool_type='MAX', mode='1'),  # 3c
            #输入:17*17*768。
            Inceptionv3(768, 192, 128, 192, 128, 192, 192, mode='2'),  # 4a
            Inceptionv3(768, 192, 160, 192, 160, 192, 192, mode='2'),  # 4b
            Inceptionv3(768, 192, 160, 192, 160, 192, 192, mode='2'),  # 4c
            Inceptionv3(768, 192, 192, 192, 192, 192, 192, mode='2'),  # 4d
            Inceptionv3(768, 0, 192, 320, 192, 192, 0, stride=2, pool_type='MAX', mode='2'),  # 4e
            #8*8*1280
            Inceptionv3(1280, 320, 384, 384, 448, 384, 192, mode='3'),  # 5a
            Inceptionv3(2048, 320, 384, 384, 448, 384, 192, pool_type='MAX', mode='3'),  # 5b
            nn.AvgPool2d(8, 1),
            Conv2d(2048, num_classes, kernel_size=1, output=True),
            Squeeze(),
        )
        if mode == 'train':
            self.aux = InceptionAux(768, num_classes)
    def forward(self, x):
        for idx, layer in enumerate(self.layers):
            if (idx == 14 and self.mode == 'train'):
                aux = self.aux(x)
            x = layer(x)
        if self.mode == 'train':
            return x, aux
        else:
            return x
    '''-----------------------网络结构参数初始化--------------------------'''
    # 目的:使网络更好收敛,准确率更高
    def _initialize_weights(self):  # 将各种初始化方法定义为一个initialize_weights()的函数并在模型初始后进行使用。
        # 遍历网络中的每一层
        for m in self.modules():
            # isinstance(object, type),如果指定的对象拥有指定的类型,则isinstance()函数返回True
            '''如果是卷积层Conv2d'''
            if isinstance(m, nn.Conv2d):
                # Kaiming正态分布方式的权重初始化
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                '''判断是否有偏置:'''
                # 如果偏置不是0,将偏置置成0,对偏置进行初始化
                if m.bias is not None:
                    # torch.nn.init.constant_(tensor, val),初始化整个矩阵为常数val
                    nn.init.constant_(m.bias, 0)
                '''如果是全连接层'''
            elif isinstance(m, nn.Linear):
                # init.normal_(tensor, mean=0.0, std=1.0),使用从正态分布中提取的值填充输入张量
                # 参数:tensor:一个n维Tensor,mean:正态分布的平均值,std:正态分布的标准差
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)
'''---------------------Inceptionv3-------------------------------------'''
'''
Inceptionv3由三个连续的Inception模块组组成
'''
class Inceptionv3(nn.Module):
    def __init__(self, input_channel, conv1_channel, conv3_reduce_channel,
                 conv3_channel, conv3_double_reduce_channel, conv3_double_channel, pool_reduce_channel, stride=1,
                 pool_type='AVG', mode='1'):
        super(Inceptionv3, self).__init__()
        self.stride = stride
        if stride == 2:
            padding_conv3 = 0
            padding_conv7 = 2
        else:
            padding_conv3 = 1
            padding_conv7 = 3
        if conv1_channel != 0:
            self.conv1 = Conv2d(input_channel, conv1_channel, kernel_size=1)
        else:
            self.conv1 = None
        self.conv3_reduce = Conv2d(input_channel, conv3_reduce_channel, kernel_size=1)
        #第一种Inception模式:输入的特征图尺寸为35x35x288,采用了论文中图5中的架构,将5x5以两个3x3代替。
        if mode == '1':
            self.conv3 = Conv2d(conv3_reduce_channel, conv3_channel, kernel_size=3, stride=stride,
                                padding=padding_conv3)
            self.conv3_double1 = Conv2d(conv3_double_reduce_channel, conv3_double_channel, kernel_size=3, padding=1)
            self.conv3_double2 = Conv2d(conv3_double_channel, conv3_double_channel, kernel_size=3, stride=stride,
                                        padding=padding_conv3)
        #第二种Inception模块:输入特征图尺寸为17x17x768,采用了论文中图6中nx1+1xn的不对称卷积结构
        elif mode == '2':
            self.conv3 = Separable_Conv2d(conv3_reduce_channel, conv3_channel, kernel_size=7, stride=stride,
                                          padding=padding_conv7)
            self.conv3_double1 = Separable_Conv2d(conv3_double_reduce_channel, conv3_double_channel, kernel_size=7,
                                                  padding=3)
            self.conv3_double2 = Separable_Conv2d(conv3_double_channel, conv3_double_channel, kernel_size=7,
                                                  stride=stride, padding=padding_conv7)
        #第三种Inception模块:输入特征图尺寸为8x8x1280, 采用了论文图7中所示的并行模块的结构
        elif mode == '3':
            self.conv3 = Concat_Separable_Conv2d(conv3_reduce_channel, conv3_channel, kernel_size=3, stride=stride,
                                                 padding=1)
            self.conv3_double1 = Conv2d(conv3_double_reduce_channel, conv3_double_channel, kernel_size=3, padding=1)
            self.conv3_double2 = Concat_Separable_Conv2d(conv3_double_channel, conv3_double_channel, kernel_size=3,
                                                         stride=stride, padding=1)
        self.conv3_double_reduce = Conv2d(input_channel, conv3_double_reduce_channel, kernel_size=1)
        if pool_type == 'MAX':
            self.pool = nn.MaxPool2d(kernel_size=3, stride=stride, padding=padding_conv3)
        elif pool_type == 'AVG':
            self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=padding_conv3)
        if pool_reduce_channel != 0:
            self.pool_reduce = Conv2d(input_channel, pool_reduce_channel, kernel_size=1)
        else:
            self.pool_reduce = None
    def forward(self, x):
        output_conv3 = self.conv3(self.conv3_reduce(x))
        output_conv3_double = self.conv3_double2(self.conv3_double1(self.conv3_double_reduce(x)))
        if self.pool_reduce != None:
            output_pool = self.pool_reduce(self.pool(x))
        else:
            output_pool = self.pool(x)
        if self.conv1 != None:
            output_conv1 = self.conv1(x)
            outputs = torch.cat([output_conv1, output_conv3, output_conv3_double, output_pool], dim=1)
        else:
            outputs = torch.cat([output_conv3, output_conv3_double, output_pool], dim=1)
        return outputs
'''------------辅助分类器---------------------------'''
class InceptionAux(nn.Module):
    def __init__(self, input_channel, num_classes):
        super(InceptionAux, self).__init__()
        self.layers = nn.Sequential(
            nn.AvgPool2d(5, 3),
            Conv2d(input_channel, 128, 1),
            Conv2d(128, 1024, kernel_size=5),
            Conv2d(1024, num_classes, kernel_size=1, output=True),
            Squeeze()
        )
    def forward(self, x):
        x = self.layers(x)
        return x
'''-------------------显示网络结构-------------------------------'''
if __name__ == '__main__':
    net = GoogLeNet(1000).cuda()
    from torchsummary import summary
    summary(net, (3, 299, 299))

本篇到这里就结束了,有什么问题欢迎大家留言讨论呀!


相关实践学习
基于函数计算一键部署掌上游戏机
本场景介绍如何使用阿里云计算服务命令快速搭建一个掌上游戏机。
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
2月前
|
机器学习/深度学习 算法 PyTorch
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
341 1
|
3月前
|
自然语言处理 PyTorch 算法框架/工具
自然语言生成任务中的5种采样方法介绍和Pytorch代码实现
在自然语言生成任务(NLG)中,采样方法是指从生成模型中获取文本输出的一种技术。本文将介绍常用的5中方法并用Pytorch进行实现。
128 0
|
1月前
|
机器学习/深度学习 关系型数据库 MySQL
大模型中常用的注意力机制GQA详解以及Pytorch代码实现
GQA是一种结合MQA和MHA优点的注意力机制,旨在保持MQA的速度并提供MHA的精度。它将查询头分成组,每组共享键和值。通过Pytorch和einops库,可以简洁实现这一概念。GQA在保持高效性的同时接近MHA的性能,是高负载系统优化的有力工具。相关论文和非官方Pytorch实现可进一步探究。
111 4
|
1月前
|
PyTorch 算法框架/工具
使用Pytorch Geometric 进行链接预测代码示例
该代码示例使用PyTorch和`torch_geometric`库实现了一个简单的图卷积网络(GCN)模型,处理Cora数据集。模型包含两层GCNConv,每层后跟ReLU激活和dropout。模型在训练集上进行200轮训练,使用Adam优化器和交叉熵损失函数。最后,计算并打印测试集的准确性。
20 6
|
2月前
|
机器学习/深度学习 并行计算 PyTorch
【多GPU炼丹-绝对有用】PyTorch多GPU并行训练:深度解析与实战代码指南
本文介绍了PyTorch中利用多GPU进行深度学习的三种策略:数据并行、模型并行和两者结合。通过`DataParallel`实现数据拆分、模型不拆分,将数据批次在不同GPU上处理;数据不拆分、模型拆分则将模型组件分配到不同GPU,适用于复杂模型;数据和模型都拆分,适合大型模型,使用`DistributedDataParallel`结合`torch.distributed`进行分布式训练。代码示例展示了如何在实践中应用这些策略。
120 2
【多GPU炼丹-绝对有用】PyTorch多GPU并行训练:深度解析与实战代码指南
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
卷积神经元网络中常用卷积核理解及基于Pytorch的实例应用(附完整代码)
卷积神经元网络中常用卷积核理解及基于Pytorch的实例应用(附完整代码)
25 0
|
2月前
|
PyTorch 算法框架/工具 Python
基于Pytorch的YoLoV4模型代码及作品欣赏
基于Pytorch的YoLoV4模型代码及作品欣赏
30 0
|
3月前
|
机器学习/深度学习 编解码 PyTorch
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
|
2月前
|
机器学习/深度学习 算法 PyTorch
【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别
【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别
96 2
|
3月前
|
机器学习/深度学习 算法 PyTorch
pytorch实现手写数字识别 | MNIST数据集(全连接神经网络)
pytorch实现手写数字识别 | MNIST数据集(全连接神经网络)