m基于GMDH网络模型的数据训练和分类matlab仿真

简介: m基于GMDH网络模型的数据训练和分类matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

93957712716f4ff863565501d1f17c5d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
c2836803a7314367fc694dc19e59f9ac_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
101bef8db05963017bc7a0b278217cb5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
GMDH神经网络的主要思想是由系统各输入单元交叉组合产生一系列的活动神经元, 其中每一神经元都具有选择最优传递函数的功能, 再从已产生的一代神经元中选择若干与目标变量最为接近的神经元, 被选出神经元强强结合再次产生新的神经元, 重复这样一个优势遗传、竞争生存和进化的过程, 直至新产生的一代神经元都不比上一代更加优秀, 于是最优模型被选出。类似于其它神经网络, GMDH 算法具有如下两个基本思想: ① 以分析黑箱的方法处理系统输入输出关系;② 用网络间元素的互联关系描述网络的功能。 GMDH 神经网络的构建过程主要是一个不断产生活动神经元, 由外部准则对神经元进行筛选, 筛选得到的神经元强强结合再产生下一层神经元,直至具有最佳复杂性的模型被选出的这样一个过程。

4ff33cae8ca1ac1c1a3bb896dd84f45d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

GMDH 网络的结构在训练过程中是不断的变化的,如下图所示的训练后的一个典型的网络结构。

417efa8e33fbeb87e6c5126537da057c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    该网络有 4 个输入和一个输出。 GMDH 网络的输入层加工输入信号前向传递到中间层,中间层的每个神经元和前一层的两个神经元对应,因此,输出层的前一层(中间层)肯定只有两个神经元。

3.MATLAB核心程序
``` % 载入数据文件 data.mat
load data.mat
t = [0:0.001:1]';
tmps = sin(2pit/100);
x = [tmps,tmps,tmps,tmps,tmps,tmps,tmps,tmps,tmps,tmps,tmps,tmps,tmps,tmps,tmps,tmps];
x = x+randn(size(x))/50;
%GMDH网络参数
layer = [12 8 4 2];%网络层定义
test_rate = 0.15;% 测试集比例
% 计算数据集长度
lens = length(x(:,1));
% 计算测试集长度
test_lens = ceil(test_rate*lens);
% 计算训练集长度
Train_lens= lens-test_lens;
% 生成随机排列的索引
Train_rand= randperm(lens);
% 提取训练集和测试集的索引
idx1 = Train_rand(1:Train_lens);
idx2 = Train_rand(Train_lens+1:end);
% 使用函数 func_GMDH_train 训练 GMDH 模型
GMDH_model= func_GMDH_train(layer,x(idx1,:),t(idx1,:));
% 在测试集上进行 GMDH 模型预测
outputs = func_GMDH_test(GMDH_model,x(idx2,:));

% 绘制验证集的真实值和预测值的图像
figure;
PlotResults(t(idx2,:), outputs, '验证集');
% 绘制训练集数据的真实值和模型输出值的图像
figure;
PlotResults(t(GMDH_model.suffleList_train,:), GMDH_model.Layers{end}.value, '训练集');

% 获取 GMDH 模型的布局、最大度以及参数数量
[layout,maxi,nParameter]=GMDHLayout(GMDH_model);
% 绘制布局图
figure;
PlotLayout(layout,maxi,nParameter)
```

相关文章
|
3天前
|
机器学习/深度学习 算法 机器人
基于Qlearning强化学习的机器人路线规划matlab仿真
本内容展示了基于Q-learning强化学习算法的路径规划研究,包括MATLAB仿真效果、理论知识及核心代码。通过训练与测试,智能体在离散化网格环境中学习最优策略以规避障碍并到达目标。代码实现中采用epsilon-贪婪策略平衡探索与利用,并针对紧急情况设计特殊动作逻辑(如后退)。最终,Q-table收敛后可生成从起点到终点的最优路径,为机器人导航提供有效解决方案。
43 20
|
4天前
|
算法 数据安全/隐私保护
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
|
3天前
|
机器学习/深度学习 数据安全/隐私保护
基于神经网络逆同步控制方法的两变频调速电机控制系统matlab仿真
本课题针对两电机变频调速系统,提出基于神经网络a阶逆系统的控制方法。通过构造原系统的逆模型,结合线性闭环调节器实现张力与速度的精确解耦控制,并在MATLAB2022a中完成仿真。该方法利用神经网络克服非线性系统的不确定性,适用于参数变化和负载扰动场景,提升同步控制精度与系统稳定性。核心内容涵盖系统原理、数学建模及神经网络逆同步控制策略,为工业自动化提供了一种高效解决方案。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
|
2天前
|
存储 算法 数据安全/隐私保护
基于风险的完整性和检查建模(RBIIM)MATLAB仿真
本程序为基于风险的完整性和检查建模(RBIIM)的MATLAB仿真,适用于评估和优化资产完整性管理计划,特别针对石油化工等领域的管道、储罐等设备。程序在MATLAB 2022A版本下运行,对比了先验密度(Prior Density)、后验完美检测(Posterior Perfect Inspection)、后验不完美检测(Posterior Imperfect Inspection)及累积后验不完美检测四个关键指标。算法采用贝叶斯统计框架,通过更新资产健康状况估计,制定最佳维护与检查策略。示例展示了核心原理与运行效果,完整程序无水印。
|
2天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
|
7月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
299 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
7月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
176 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
7月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
199 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
10月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章