使用Pandas进行数据清理的入门示例

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 数据清理是数据分析过程中的关键步骤,它涉及识别缺失值、重复行、异常值和不正确的数据类型。获得干净可靠的数据对于准确的分析和建模非常重要。

本文将介绍以下6个经常使用的数据清理操作:

检查缺失值、检查重复行、处理离群值、检查所有列的数据类型、删除不必要的列、数据不一致处理

第一步,让我们导入库和数据集。

 # Import libraries
 import pandas as pd

 # Read data from a CSV file
 df = pd.read_csv('filename.csv')

检查缺失值

isnull()

方法可以用于查看数据框或列中的缺失值。

 # Check for missing values in the dataframe
 df.isnull()

 # Check the number of missing values in the dataframe
 df.isnull().sum().sort_values(ascending=False)

 # Check for missing values in the 'Customer Zipcode' column
 df['Customer Zipcode'].isnull().sum()

 # Check what percentage of the data frame these 3 missing values ••represent
 print(f"3 missing values represents {(df['Customer Zipcode'].isnull().sum() / df.shape[0] * 100).round(4)}% of the rows in our DataFrame.")

Zipcode列中有3个缺失值

dropna()

可以删除包含至少一个缺失值的任何行或列。

 # Drop all the rows where at least one element is missing
 df = df.dropna()    
 # or df.dropna(axis=0) **(axis=0 for rows and axis=1 for columns)

 # Note: inplace=True modifies the DataFrame rather than creating a new one
 df.dropna(inplace=True)

 # Drop all the columns where at least one element is missing
 df.dropna(axis=1, inplace=True)

 # Drop rows with missing values in specific columns
 df.dropna(subset = ['Additional Order items', 'Customer Zipcode'], inplace=True)
fillna()

也可以用更合适的值替换缺失的值,例如平均值、中位数或自定义值。

 # Fill missing values in the dataset with a specific value
 df = df.fillna(0)

 # Replace missing values in the dataset with median
 df = df.fillna(df.median())

 # Replace missing values in Order Quantity column with the mean of Order Quantities
 df['Order Quantity'].fillna(df["Order Quantity"].mean, inplace=True)

检查重复行

duplicate()

方法可以查看重复的行。

 # Check duplicate rows
 df.duplicated()

 # Check the number of duplicate rows
 df.duplicated().sum()
drop_duplates()

可以使用这个方法删除重复的行。

 # Drop duplicate rows (but only keep the first row)
 df = df.drop_duplicates(keep='first') #keep='first' / keep='last' / keep=False

 # Note: inplace=True modifies the DataFrame rather than creating a new one
 df.drop_duplicates(keep='first', inplace=True)

处理离群值

异常值是可以显著影响分析的极端值。可以通过删除它们或将它们转换为更合适的值来处理它们。

describe()

的maximum和mean之类的信息可以帮助我们查找离群值。

 # Get a statistics summary of the dataset
 df["Product Price"].describe()

max”值:1999。其他数值都不接近1999年,而平均值是146,所以可以确定1999是一个离群值,需要处理

或者还可以绘制直方图查看数据的分布。

 plt.figure(figsize=(8, 6))
 df["Product Price"].hist(bins=100)

在直方图中,可以看到大部分的价格数据都在0到500之间。

箱线图在检测异常值时也很有用。

 plt.figure(figsize=(6, 4))
 df.boxplot(column=['Product Price'])

可以看到价格列有多个离群值数据点。(高于400的值)

检查列的数据类型

info()

可以查看数据集中列的数据类型。

 # Provide a summary of dataset
 df.info()

to_datetime()

方法将列转换为日期时间数据类型。

 # Convert data type of Order Date column to date
 df["Order Date"] = pd.to_datetime(df["Order Date"])
to_numeric()

可以将列转换为数字数据类型(例如,整数或浮点数)。

 # Convert data type of Order Quantity column to numeric data type
 df["Order Quantity"] = pd.to_numeric(df["Order Quantity"])
to_timedelta()

方法将列转换为timedelta数据类型,如果值表示持续时间,可以使用这个函数

 # Convert data type of Duration column to timedelta type
 df["Duration "] = pd.to_timedelta(df["Duration"])

删除不必要的列

drop()

方法用于从数据框中删除指定的行或列。

 # Drop Order Region column
 # (axis=0 for rows and axis=1 for columns)
 df = df.drop('Order Region', axis=1)

 # Drop Order Region column without having to reassign df (using inplace=True)
 df.drop('Order Region', axis=1, inplace=True)

 # Drop by column number instead of by column label
 df = df.drop(df.columns[[0, 1, 3]], axis=1)  # df.columns is zero-based

数据不一致处理

数据不一致可能是由于格式或单位不同造成的。Pandas提供字符串方法来处理不一致的数据。

str.lower() & str.upper()

这两个函数用于将字符串中的所有字符转换为小写或大写。它有助于标准化DataFrame列中字符串的情况。

 # Rename column names to lowercase
 df.columns = df.columns.str.lower()

 # Rename values in  Customer Fname column to uppercase
 df["Customer Fname"] = df["Customer Fname"].str.upper()

str.strip()

函数用于删除字符串值开头或结尾可能出现的任何额外空格。

 # In Customer Segment column, convert names to lowercase and remove leading/trailing spaces
 df['Customer Segment'] = df['Customer Segment'].str.lower().str.strip()

replace()

函数用于用新值替换DataFrame列中的特定值。

 # Replace values in dataset
 df = df.replace({"CA": "California", "TX": "Texas"})

 # Replace values in a spesific column
 df["Customer Country"] = df["Customer Country"].replace({"United States": "USA", "Puerto Rico": "PR"})

mapping()

可以创建一个字典,将不一致的值映射到标准化的对应值。然后将此字典与replace()函数一起使用以执行替换。

 # Replace specific values using mapping
 mapping = {'CA': 'California', 'TX': 'Texas'}
 df['Customer State'] = df['Customer State'].replace(mapping)

rename()

函数用于重命名DataFrame的列或索引标签。

 # Rename some columns
 df.rename(columns={'Customer City': 'Customer_City', 'Customer Fname' : 'Customer_Fname'}, inplace=True)
 # Rename some columns
 new_names = {'Customer Fname':'Customer_Firstname', 'Customer Fname':'Customer_Fname'}
 df.rename(columns=new_names, inplace=True)
 df.head()

总结

Python pandas包含了丰富的函数和方法集来处理丢失的数据,删除重复的数据,并有效地执行其他数据清理操作。

使用pandas功能,数据科学家和数据分析师可以简化数据清理工作流程,并确保数据集的质量和完整性。

https://avoid.overfit.cn/post/d594591441dd47b2b1a6264c1c71368a

作者:Python Fundamentals

目录
相关文章
|
13天前
|
Python
|
13天前
|
Python
|
12天前
|
Python
Pandas 常用函数-数据合并
Pandas 常用函数-数据合并
30 1
|
13天前
|
索引 Python
Pandas 常用函数-数据排序
10月更文挑战第28天
8 1
|
14天前
|
Python
Pandas 常用函数-查看数据
Pandas 常用函数-查看数据
14 2
|
14天前
|
SQL JSON 数据库
Pandas 常用函数-读取数据
Pandas 常用函数-读取数据
12 2
|
17天前
|
Python
通过Pandas库处理股票收盘价数据,识别最近一次死叉后未出现金叉的具体位置的方法
在金融分析领域,"死叉"指的是短期移动平均线(如MA5)下穿长期移动平均线(如MA10),而"金叉"则相反。本文介绍了一种利用Python编程语言,通过Pandas库处理股票收盘价数据,识别最近一次死叉后未出现金叉的具体位置的方法。该方法首先计算两种移动平均线,接着确定它们的交叉点,最后检查并输出最近一次死叉及其后是否形成了金叉。此技术广泛应用于股市趋势分析。
33 2
|
12天前
|
Python
Pandas 常用函数-数据选择和过滤
Pandas 常用函数-数据选择和过滤
10 0
|
1月前
|
数据可视化 数据挖掘 数据处理
模型预测笔记(四):pandas_profiling生成数据报告
本文介绍了pandas_profiling库,它是一个Python工具,用于自动生成包含多种统计指标和可视化的详细HTML数据报告,支持大型数据集并允许自定义配置。安装命令为`pip install pandas_profiling`,使用示例代码`pfr = pandas_profiling.ProfileReport(data_train); pfr.to_file("./example.html")`。
45 1
|
2月前
|
索引 Python
使用 pandas 对数据进行移动计算
使用 pandas 对数据进行移动计算
23 0