Pandas 常用函数-数据合并

简介: Pandas 常用函数-数据合并
函数 说明
pd.concat([df1, df2]) 将多个数据框按照行或列进行合并;
pd.merge(df1, df2, on=column_name) 按照指定列将两个数据框进行合并。

实例

# 将多个数据框按照行或列进行合并

df = pd.concat([df1, df2])


# 按照指定列将两个数据框进行合并

df = pd.merge(df1, df2, on='column_name')

目录
相关文章
|
10天前
|
Python
|
10天前
|
Python
|
10天前
|
索引 Python
Pandas 常用函数-数据排序
10月更文挑战第28天
8 1
|
11天前
|
数据采集 Python
Pandas 常用函数-数据清洗
Pandas 常用函数-数据清洗
16 2
|
11天前
|
Python
Pandas 常用函数-查看数据
Pandas 常用函数-查看数据
13 2
|
9天前
|
BI Python
Pandas 常用函数-数据统计和描述
Pandas 常用函数-数据统计和描述
22 0
|
9天前
|
Python
Pandas 常用函数-数据选择和过滤
Pandas 常用函数-数据选择和过滤
9 0
|
15天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
43 0
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
75 0
|
16天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
30 2